Block-Structured AMR Software Framework
 
Loading...
Searching...
No Matches
AMReX_MLPoisson.H
Go to the documentation of this file.
1#ifndef AMREX_MLPOISSON_H_
2#define AMREX_MLPOISSON_H_
3#include <AMReX_Config.H>
4
6#include <AMReX_MLPoisson_K.H>
8
9namespace amrex {
10
11// del dot grad phi
12
13template <typename MF>
15 : public MLCellABecLapT<MF>
16{
17public:
18
19 using FAB = typename MF::fab_type;
20 using RT = typename MF::value_type;
21
22 using BCType = LinOpBCType;
24
25 MLPoissonT () = default;
26 MLPoissonT (const Vector<Geometry>& a_geom,
27 const Vector<BoxArray>& a_grids,
28 const Vector<DistributionMapping>& a_dmap,
29 const LPInfo& a_info = LPInfo(),
30 const Vector<FabFactory<FAB> const*>& a_factory = {});
31 MLPoissonT (const Vector<Geometry>& a_geom,
32 const Vector<BoxArray>& a_grids,
33 const Vector<DistributionMapping>& a_dmap,
34 const Vector<iMultiFab const*>& a_overset_mask, // 1: unknown, 0: known
35 const LPInfo& a_info = LPInfo(),
36 const Vector<FabFactory<FAB> const*>& a_factory = {});
37 ~MLPoissonT () override;
38
39 MLPoissonT (const MLPoissonT<MF>&) = delete;
43
44 void define (const Vector<Geometry>& a_geom,
45 const Vector<BoxArray>& a_grids,
46 const Vector<DistributionMapping>& a_dmap,
47 const LPInfo& a_info = LPInfo(),
48 const Vector<FabFactory<FAB> const*>& a_factory = {});
49
50 void define (const Vector<Geometry>& a_geom,
51 const Vector<BoxArray>& a_grids,
52 const Vector<DistributionMapping>& a_dmap,
53 const Vector<iMultiFab const*>& a_overset_mask,
54 const LPInfo& a_info = LPInfo(),
55 const Vector<FabFactory<FAB> const*>& a_factory = {});
56
57 void prepareForSolve () final;
58 [[nodiscard]] bool isSingular (int amrlev) const final { return m_is_singular[amrlev]; }
59 [[nodiscard]] bool isBottomSingular () const final { return m_is_singular[0]; }
60 void Fapply (int amrlev, int mglev, MF& out, const MF& in) const final;
61 void Fsmooth (int amrlev, int mglev, MF& sol, const MF& rhs, int redblack) const final;
62 void FFlux (int amrlev, const MFIter& mfi,
64 const FAB& sol, Location loc, int face_only=0) const final;
65
66 void normalize (int amrlev, int mglev, MF& mf) const final;
67
68 [[nodiscard]] RT getAScalar () const final { return RT(0.0); }
69 [[nodiscard]] RT getBScalar () const final { return RT(-1.0); }
70 [[nodiscard]] MF const* getACoeffs (int /*amrlev*/, int /*mglev*/) const final { return nullptr; }
71 [[nodiscard]] Array<MF const*,AMREX_SPACEDIM> getBCoeffs (int /*amrlev*/, int /*mglev*/) const final
72 { return {{ AMREX_D_DECL(nullptr,nullptr,nullptr)}}; }
73
74 [[nodiscard]] std::unique_ptr<MLLinOpT<MF>> makeNLinOp (int grid_size) const final;
75
76 [[nodiscard]] bool supportNSolve () const final;
77
78 void copyNSolveSolution (MF& dst, MF const& src) const final;
79
81 void get_dpdn_on_domain_faces (Array<MF*,AMREX_SPACEDIM> const& dpdn,
82 MF const& phi);
83
84private:
85
87};
88
89template <typename MF>
90MLPoissonT<MF>::MLPoissonT (const Vector<Geometry>& a_geom,
91 const Vector<BoxArray>& a_grids,
92 const Vector<DistributionMapping>& a_dmap,
93 const LPInfo& a_info,
94 const Vector<FabFactory<FAB> const*>& a_factory)
95{
96 define(a_geom, a_grids, a_dmap, a_info, a_factory);
97}
98
99template <typename MF>
101 const Vector<BoxArray>& a_grids,
102 const Vector<DistributionMapping>& a_dmap,
103 const Vector<iMultiFab const*>& a_overset_mask,
104 const LPInfo& a_info,
105 const Vector<FabFactory<FAB> const*>& a_factory)
106{
107 define(a_geom, a_grids, a_dmap, a_overset_mask, a_info, a_factory);
108}
109
110template <typename MF>
111void
113 const Vector<BoxArray>& a_grids,
114 const Vector<DistributionMapping>& a_dmap,
115 const LPInfo& a_info,
116 const Vector<FabFactory<FAB> const*>& a_factory)
117{
118 BL_PROFILE("MLPoisson::define()");
119 MLCellABecLapT<MF>::define(a_geom, a_grids, a_dmap, a_info, a_factory);
120}
121
122template <typename MF>
123void
125 const Vector<BoxArray>& a_grids,
126 const Vector<DistributionMapping>& a_dmap,
127 const Vector<iMultiFab const*>& a_overset_mask,
128 const LPInfo& a_info,
129 const Vector<FabFactory<FAB> const*>& a_factory)
130{
131 BL_PROFILE("MLPoisson::define(overset)");
132 MLCellABecLapT<MF>::define(a_geom, a_grids, a_dmap, a_overset_mask, a_info, a_factory);
133}
134
135template <typename MF>
136MLPoissonT<MF>::~MLPoissonT () = default;
137
138template <typename MF>
139void
141{
142 BL_PROFILE("MLPoisson::prepareForSolve()");
143
145
146 m_is_singular.clear();
147 m_is_singular.resize(this->m_num_amr_levels, false);
148 auto itlo = std::find(this->m_lobc[0].begin(), this->m_lobc[0].end(), BCType::Dirichlet);
149 auto ithi = std::find(this->m_hibc[0].begin(), this->m_hibc[0].end(), BCType::Dirichlet);
150 if (itlo == this->m_lobc[0].end() && ithi == this->m_hibc[0].end())
151 { // No Dirichlet
152 for (int alev = 0; alev < this->m_num_amr_levels; ++alev)
153 {
154 // For now this assumes that overset regions are treated as Dirichlet bc's
155 if (this->m_domain_covered[alev] && !this->m_overset_mask[alev][0])
156 {
157 m_is_singular[alev] = true;
158 }
159 }
160 }
161 if (!m_is_singular[0] && this->m_needs_coarse_data_for_bc &&
162 this->m_coarse_fine_bc_type == LinOpBCType::Neumann)
163 {
164 AMREX_ASSERT(this->m_overset_mask[0][0] == nullptr);
165 auto bbox = this->m_grids[0][0].minimalBox();
166 for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
167 if (this->m_lobc[0][idim] == LinOpBCType::Dirichlet) {
168 bbox.growLo(idim,1);
169 }
170 if (this->m_hibc[0][idim] == LinOpBCType::Dirichlet) {
171 bbox.growHi(idim,1);
172 }
173 }
174 if (this->m_geom[0][0].Domain().contains(bbox)) {
175 m_is_singular[0] = true;
176 }
177 }
178}
179
180template <typename MF>
181void
182MLPoissonT<MF>::Fapply (int amrlev, int mglev, MF& out, const MF& in) const
183{
184 BL_PROFILE("MLPoisson::Fapply()");
185
186 const Real* dxinv = this->m_geom[amrlev][mglev].InvCellSize();
187
188 AMREX_D_TERM(const RT dhx = RT(dxinv[0]*dxinv[0]);,
189 const RT dhy = RT(dxinv[1]*dxinv[1]);,
190 const RT dhz = RT(dxinv[2]*dxinv[2]););
191
192#if (AMREX_SPACEDIM == 3)
193 RT dh0 = this->get_d0(dhx, dhy, dhz);
194 RT dh1 = this->get_d1(dhx, dhy, dhz);
195#endif
196
197#if (AMREX_SPACEDIM < 3)
198 const RT dx = RT(this->m_geom[amrlev][mglev].CellSize(0));
199 const RT probxlo = RT(this->m_geom[amrlev][mglev].ProbLo(0));
200#endif
201
202#ifdef AMREX_USE_GPU
203 if (Gpu::inLaunchRegion() && out.isFusingCandidate() && !this->hasHiddenDimension()) {
204 auto const& xma = in.const_arrays();
205 auto const& yma = out.arrays();
206 if (this->m_overset_mask[amrlev][mglev]) {
208 const auto& osmma = this->m_overset_mask[amrlev][mglev]->const_arrays();
209 ParallelFor(out,
210 [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) noexcept
211 {
213 mlpoisson_adotx_os(AMREX_D_DECL(i,j,k), yma[box_no], xma[box_no], osmma[box_no],
214 AMREX_D_DECL(dhx,dhy,dhz));
215 });
216 } else {
217#if (AMREX_SPACEDIM < 3)
218 if (this->m_has_metric_term) {
219 ParallelFor(out,
220 [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) noexcept
221 {
223 mlpoisson_adotx_m(AMREX_D_DECL(i,j,k), yma[box_no], xma[box_no],
224 AMREX_D_DECL(dhx,dhy,dhz), dx, probxlo);
225 });
226 } else
227#endif
228 {
229 ParallelFor(out,
230 [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) noexcept
231 {
233 mlpoisson_adotx(AMREX_D_DECL(i,j,k), yma[box_no], xma[box_no],
234 AMREX_D_DECL(dhx,dhy,dhz));
235 });
236 }
237 }
239 } else
240#endif
241 {
242#ifdef AMREX_USE_OMP
243#pragma omp parallel if (Gpu::notInLaunchRegion())
244#endif
245 for (MFIter mfi(out, TilingIfNotGPU()); mfi.isValid(); ++mfi)
246 {
247 const Box& bx = mfi.tilebox();
248 const auto& xfab = in.array(mfi);
249 const auto& yfab = out.array(mfi);
250
251 if (this->m_overset_mask[amrlev][mglev]) {
253 const auto& osm = this->m_overset_mask[amrlev][mglev]->const_array(mfi);
255 {
257 mlpoisson_adotx_os(AMREX_D_DECL(i,j,k), yfab, xfab, osm,
258 AMREX_D_DECL(dhx,dhy,dhz));
259 });
260 } else {
261#if (AMREX_SPACEDIM == 3)
262 if (this->hasHiddenDimension()) {
263 Box const& bx2d = this->compactify(bx);
264 const auto& xfab2d = this->compactify(xfab);
265 const auto& yfab2d = this->compactify(yfab);
267 {
269 TwoD::mlpoisson_adotx(i, j, yfab2d, xfab2d, dh0, dh1);
270 });
271 } else {
273 {
274 mlpoisson_adotx(i, j, k, yfab, xfab, dhx, dhy, dhz);
275 });
276 }
277#elif (AMREX_SPACEDIM == 2)
278 if (this->m_has_metric_term) {
280 {
282 mlpoisson_adotx_m(i, j, yfab, xfab, dhx, dhy, dx, probxlo);
283 });
284 } else {
286 {
288 mlpoisson_adotx(i, j, yfab, xfab, dhx, dhy);
289 });
290 }
291#elif (AMREX_SPACEDIM == 1)
292 if (this->m_has_metric_term) {
294 {
296 mlpoisson_adotx_m(i, yfab, xfab, dhx, dx, probxlo);
297 });
298 } else {
300 {
302 mlpoisson_adotx(i, yfab, xfab, dhx);
303 });
304 }
305#endif
306 }
307 }
308 }
309}
310
311template <typename MF>
312void
313MLPoissonT<MF>::normalize (int amrlev, int mglev, MF& mf) const
314{
315 amrex::ignore_unused(amrlev,mglev,mf);
316#if (AMREX_SPACEDIM != 3)
317 BL_PROFILE("MLPoisson::normalize()");
318
319 if (!this->m_has_metric_term) { return; }
320
321 const Real* dxinv = this->m_geom[amrlev][mglev].InvCellSize();
322 AMREX_D_TERM(const RT dhx = RT(dxinv[0]*dxinv[0]);,
323 const RT dhy = RT(dxinv[1]*dxinv[1]);,
324 const RT dhz = RT(dxinv[2]*dxinv[2]););
325 const RT dx = RT(this->m_geom[amrlev][mglev].CellSize(0));
326 const RT probxlo = RT(this->m_geom[amrlev][mglev].ProbLo(0));
327
328#ifdef AMREX_USE_GPU
329 if (Gpu::inLaunchRegion() && mf.isFusingCandidate()) {
330 auto const& ma = mf.arrays();
331 ParallelFor(mf,
332 [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) noexcept
333 {
334 mlpoisson_normalize(i,j,k, ma[box_no], AMREX_D_DECL(dhx,dhy,dhz), dx, probxlo);
335 });
337 } else
338#endif
339 {
340#ifdef AMREX_USE_OMP
341#pragma omp parallel if (Gpu::notInLaunchRegion())
342#endif
343 for (MFIter mfi(mf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
344 {
345 const Box& bx = mfi.tilebox();
346 const auto& fab = mf.array(mfi);
347
348#if (AMREX_SPACEDIM == 2)
350 {
351 mlpoisson_normalize(i,j,k, fab, dhx, dhy, dx, probxlo);
352 });
353#else
355 {
356 mlpoisson_normalize(i,j,k, fab, dhx, dx, probxlo);
357 });
358#endif
359 }
360 }
361#endif
362}
363
364template <typename MF>
365void
366MLPoissonT<MF>::Fsmooth (int amrlev, int mglev, MF& sol, const MF& rhs, int redblack) const
367{
368 BL_PROFILE("MLPoisson::Fsmooth()");
369
370 MF Ax;
371 if (! this->m_use_gauss_seidel) { // jacobi
372 Ax.define(sol.boxArray(), sol.DistributionMap(), sol.nComp(), 0);
373 Fapply(amrlev, mglev, Ax, sol);
374 }
375
376 const auto& undrrelxr = this->m_undrrelxr[amrlev][mglev];
377 const auto& maskvals = this->m_maskvals [amrlev][mglev];
378
379 OrientationIter oitr;
380
381 const auto& f0 = undrrelxr[oitr()]; ++oitr;
382 const auto& f1 = undrrelxr[oitr()]; ++oitr;
383#if (AMREX_SPACEDIM > 1)
384 const auto& f2 = undrrelxr[oitr()]; ++oitr;
385 const auto& f3 = undrrelxr[oitr()]; ++oitr;
386#if (AMREX_SPACEDIM > 2)
387 const auto& f4 = undrrelxr[oitr()]; ++oitr;
388 const auto& f5 = undrrelxr[oitr()]; ++oitr;
389#endif
390#endif
391
392 const MultiMask& mm0 = maskvals[0];
393 const MultiMask& mm1 = maskvals[1];
394#if (AMREX_SPACEDIM > 1)
395 const MultiMask& mm2 = maskvals[2];
396 const MultiMask& mm3 = maskvals[3];
397#if (AMREX_SPACEDIM > 2)
398 const MultiMask& mm4 = maskvals[4];
399 const MultiMask& mm5 = maskvals[5];
400#endif
401#endif
402
403 const Real* dxinv = this->m_geom[amrlev][mglev].InvCellSize();
404 AMREX_D_TERM(const RT dhx = RT(dxinv[0]*dxinv[0]);,
405 const RT dhy = RT(dxinv[1]*dxinv[1]);,
406 const RT dhz = RT(dxinv[2]*dxinv[2]););
407
408#if (AMREX_SPACEDIM == 3)
409 RT dh0 = RT(this->get_d0(dhx, dhy, dhz));
410 RT dh1 = RT(this->get_d1(dhx, dhy, dhz));
411#endif
412
413#if (AMREX_SPACEDIM < 3)
414 const RT dx = RT(this->m_geom[amrlev][mglev].CellSize(0));
415 const RT probxlo = RT(this->m_geom[amrlev][mglev].ProbLo(0));
416#endif
417
418 MFItInfo mfi_info;
419 if (Gpu::notInLaunchRegion()) { mfi_info.EnableTiling().SetDynamic(true); }
420
421#ifdef AMREX_USE_GPU
422 if (Gpu::inLaunchRegion() && sol.isFusingCandidate()
423 && ! this->hasHiddenDimension())
424 {
425 const auto& m0ma = mm0.const_arrays();
426 const auto& m1ma = mm1.const_arrays();
427#if (AMREX_SPACEDIM > 1)
428 const auto& m2ma = mm2.const_arrays();
429 const auto& m3ma = mm3.const_arrays();
430#if (AMREX_SPACEDIM > 2)
431 const auto& m4ma = mm4.const_arrays();
432 const auto& m5ma = mm5.const_arrays();
433#endif
434#endif
435
436 const auto& solnma = sol.arrays();
437 const auto& rhsma = rhs.const_arrays();
438
439 AMREX_ALWAYS_ASSERT(rhs.nGrowVect() == 0);
440
441 const auto& f0ma = f0.const_arrays();
442 const auto& f1ma = f1.const_arrays();
443#if (AMREX_SPACEDIM > 1)
444 const auto& f2ma = f2.const_arrays();
445 const auto& f3ma = f3.const_arrays();
446#if (AMREX_SPACEDIM > 2)
447 const auto& f4ma = f4.const_arrays();
448 const auto& f5ma = f5.const_arrays();
449#endif
450#endif
451
452 if (this->m_overset_mask[amrlev][mglev]) {
454 const auto& osmma = this->m_overset_mask[amrlev][mglev]->const_arrays();
455 if (this->m_use_gauss_seidel) {
456 ParallelFor(sol,
457 [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) noexcept
458 {
459 Box vbx(rhsma[box_no]);
460 mlpoisson_gsrb_os(i, j, k, solnma[box_no], rhsma[box_no],
461 osmma[box_no], AMREX_D_DECL(dhx, dhy, dhz),
462 f0ma[box_no], m0ma[box_no],
463 f1ma[box_no], m1ma[box_no],
464#if (AMREX_SPACEDIM > 1)
465 f2ma[box_no], m2ma[box_no],
466 f3ma[box_no], m3ma[box_no],
467#if (AMREX_SPACEDIM > 2)
468 f4ma[box_no], m4ma[box_no],
469 f5ma[box_no], m5ma[box_no],
470#endif
471#endif
472 vbx, redblack);
473 });
474 } else {
475 const auto& axma = Ax.const_arrays();
476 ParallelFor(sol,
477 [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) noexcept
478 {
479 Box vbx(rhsma[box_no]);
480 mlpoisson_jacobi_os(i, j, k, solnma[box_no], rhsma[box_no],
481 axma[box_no], osmma[box_no],
482 AMREX_D_DECL(dhx, dhy, dhz),
483 f0ma[box_no], m0ma[box_no],
484 f1ma[box_no], m1ma[box_no],
485#if (AMREX_SPACEDIM > 1)
486 f2ma[box_no], m2ma[box_no],
487 f3ma[box_no], m3ma[box_no],
488#if (AMREX_SPACEDIM > 2)
489 f4ma[box_no], m4ma[box_no],
490 f5ma[box_no], m5ma[box_no],
491#endif
492#endif
493 vbx);
494 });
495 }
496 }
497#if (AMREX_SPACEDIM < 3)
498 else if (this->m_has_metric_term) {
499 if (this->m_use_gauss_seidel) {
500 ParallelFor(sol,
501 [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) noexcept
502 {
503 Box vbx(rhsma[box_no]);
504 mlpoisson_gsrb_m(i, j, k, solnma[box_no], rhsma[box_no],
505 AMREX_D_DECL(dhx, dhy, dhz),
506 f0ma[box_no], m0ma[box_no],
507 f1ma[box_no], m1ma[box_no],
508#if (AMREX_SPACEDIM > 1)
509 f2ma[box_no], m2ma[box_no],
510 f3ma[box_no], m3ma[box_no],
511#endif
512 vbx, redblack,
513 dx, probxlo);
514 });
515 } else {
516 const auto& axma = Ax.const_arrays();
517 ParallelFor(sol,
518 [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) noexcept
519 {
520 Box vbx(rhsma[box_no]);
521 mlpoisson_jacobi_m(i, j, k, solnma[box_no], rhsma[box_no],
522 axma[box_no], AMREX_D_DECL(dhx, dhy, dhz),
523 f0ma[box_no], m0ma[box_no],
524 f1ma[box_no], m1ma[box_no],
525#if (AMREX_SPACEDIM > 1)
526 f2ma[box_no], m2ma[box_no],
527 f3ma[box_no], m3ma[box_no],
528#endif
529 vbx, dx, probxlo);
530 });
531 }
532 }
533#endif
534 else {
535 if (this->m_use_gauss_seidel) {
536 ParallelFor(sol,
537 [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) noexcept
538 {
539 Box vbx(rhsma[box_no]);
540 mlpoisson_gsrb(i, j, k, solnma[box_no], rhsma[box_no],
541 AMREX_D_DECL(dhx, dhy, dhz),
542 f0ma[box_no], m0ma[box_no],
543 f1ma[box_no], m1ma[box_no],
544#if (AMREX_SPACEDIM > 1)
545 f2ma[box_no], m2ma[box_no],
546 f3ma[box_no], m3ma[box_no],
547#if (AMREX_SPACEDIM > 2)
548 f4ma[box_no], m4ma[box_no],
549 f5ma[box_no], m5ma[box_no],
550#endif
551#endif
552 vbx, redblack);
553 });
554 } else {
555 const auto& axma = Ax.const_arrays();
556 ParallelFor(sol,
557 [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) noexcept
558 {
559 Box vbx(rhsma[box_no]);
560 mlpoisson_jacobi(i, j, k, solnma[box_no], rhsma[box_no],
561 axma[box_no], AMREX_D_DECL(dhx, dhy, dhz),
562 f0ma[box_no], m0ma[box_no],
563 f1ma[box_no], m1ma[box_no],
564#if (AMREX_SPACEDIM > 1)
565 f2ma[box_no], m2ma[box_no],
566 f3ma[box_no], m3ma[box_no],
567#if (AMREX_SPACEDIM > 2)
568 f4ma[box_no], m4ma[box_no],
569 f5ma[box_no], m5ma[box_no],
570#endif
571#endif
572 vbx);
573 });
574 }
575 }
576 } else
577#endif
578 {
579#ifdef AMREX_USE_OMP
580#pragma omp parallel if (Gpu::notInLaunchRegion())
581#endif
582 for (MFIter mfi(sol,mfi_info); mfi.isValid(); ++mfi)
583 {
584 const auto& m0 = mm0.array(mfi);
585 const auto& m1 = mm1.array(mfi);
586#if (AMREX_SPACEDIM > 1)
587 const auto& m2 = mm2.array(mfi);
588 const auto& m3 = mm3.array(mfi);
589#if (AMREX_SPACEDIM > 2)
590 const auto& m4 = mm4.array(mfi);
591 const auto& m5 = mm5.array(mfi);
592#endif
593#endif
594
595 const Box& tbx = mfi.tilebox();
596 const Box& vbx = mfi.validbox();
597 const auto& solnfab = sol.array(mfi);
598 const auto& rhsfab = rhs.array(mfi);
599
600 const auto& f0fab = f0.array(mfi);
601 const auto& f1fab = f1.array(mfi);
602#if (AMREX_SPACEDIM > 1)
603 const auto& f2fab = f2.array(mfi);
604 const auto& f3fab = f3.array(mfi);
605#if (AMREX_SPACEDIM > 2)
606 const auto& f4fab = f4.array(mfi);
607 const auto& f5fab = f5.array(mfi);
608#endif
609#endif
610
611#if (AMREX_SPACEDIM == 1)
612 if (this->m_overset_mask[amrlev][mglev]) {
614 const auto& osm = this->m_overset_mask[amrlev][mglev]->const_array(mfi);
615 if (this->m_use_gauss_seidel) {
617 {
618 mlpoisson_gsrb_os(i, j, k, solnfab, rhsfab, osm, dhx,
619 f0fab, m0,
620 f1fab, m1,
621 vbx, redblack);
622 });
623 } else {
624 const auto& axfab = Ax.const_array(mfi);
626 {
627 mlpoisson_jacobi_os(i, j, k, solnfab, rhsfab, axfab,
628 osm, dhx,
629 f0fab, m0,
630 f1fab, m1,
631 vbx);
632 });
633 }
634 } else if (this->m_has_metric_term) {
635 if (this->m_use_gauss_seidel) {
637 {
638 mlpoisson_gsrb_m(i, j, k, solnfab, rhsfab, dhx,
639 f0fab, m0,
640 f1fab, m1,
641 vbx, redblack,
642 dx, probxlo);
643 });
644 } else {
645 const auto& axfab = Ax.const_array(mfi);
647 {
648 mlpoisson_jacobi_m(i, j, k, solnfab, rhsfab, axfab, dhx,
649 f0fab, m0,
650 f1fab, m1,
651 vbx, dx, probxlo);
652 });
653 }
654 } else {
655 if (this->m_use_gauss_seidel) {
657 {
658 mlpoisson_gsrb(i, j, k, solnfab, rhsfab, dhx,
659 f0fab, m0,
660 f1fab, m1,
661 vbx, redblack);
662 });
663 } else {
664 const auto& axfab = Ax.const_array(mfi);
666 {
667 mlpoisson_jacobi(i, j, k, solnfab, rhsfab, axfab, dhx,
668 f0fab, m0,
669 f1fab, m1,
670 vbx);
671 });
672 }
673 }
674#endif
675
676#if (AMREX_SPACEDIM == 2)
677 if (this->m_overset_mask[amrlev][mglev]) {
679 const auto& osm = this->m_overset_mask[amrlev][mglev]->const_array(mfi);
680 if (this->m_use_gauss_seidel) {
682 {
683 mlpoisson_gsrb_os(i, j, k, solnfab, rhsfab, osm, dhx, dhy,
684 f0fab, m0,
685 f1fab, m1,
686 f2fab, m2,
687 f3fab, m3,
688 vbx, redblack);
689 });
690 } else {
691 const auto& axfab = Ax.const_array(mfi);
693 {
694 mlpoisson_jacobi_os(i, j, k, solnfab, rhsfab, axfab,
695 osm, dhx, dhy,
696 f0fab, m0,
697 f1fab, m1,
698 f2fab, m2,
699 f3fab, m3,
700 vbx);
701 });
702 }
703 } else if (this->m_has_metric_term) {
704 if (this->m_use_gauss_seidel) {
706 {
707 mlpoisson_gsrb_m(i, j, k, solnfab, rhsfab, dhx, dhy,
708 f0fab, m0,
709 f1fab, m1,
710 f2fab, m2,
711 f3fab, m3,
712 vbx, redblack,
713 dx, probxlo);
714 });
715 } else {
716 const auto& axfab = Ax.const_array(mfi);
718 {
719 mlpoisson_jacobi_m(i, j, k, solnfab, rhsfab, axfab, dhx, dhy,
720 f0fab, m0,
721 f1fab, m1,
722 f2fab, m2,
723 f3fab, m3,
724 vbx, dx, probxlo);
725 });
726 }
727 } else {
728 if (this->m_use_gauss_seidel) {
730 {
731 mlpoisson_gsrb(i, j, k, solnfab, rhsfab, dhx, dhy,
732 f0fab, m0,
733 f1fab, m1,
734 f2fab, m2,
735 f3fab, m3,
736 vbx, redblack);
737 });
738 } else {
739 const auto& axfab = Ax.const_array(mfi);
741 {
742 mlpoisson_jacobi(i, j, k, solnfab, rhsfab, axfab, dhx, dhy,
743 f0fab, m0,
744 f1fab, m1,
745 f2fab, m2,
746 f3fab, m3,
747 vbx);
748 });
749 }
750 }
751#endif
752
753#if (AMREX_SPACEDIM == 3)
754 if (this->m_overset_mask[amrlev][mglev]) {
756 const auto& osm = this->m_overset_mask[amrlev][mglev]->const_array(mfi);
757 if (this->m_use_gauss_seidel) {
759 {
760 mlpoisson_gsrb_os(i, j, k, solnfab, rhsfab, osm, dhx, dhy, dhz,
761 f0fab, m0,
762 f1fab, m1,
763 f2fab, m2,
764 f3fab, m3,
765 f4fab, m4,
766 f5fab, m5,
767 vbx, redblack);
768 });
769 } else {
770 const auto& axfab = Ax.const_array(mfi);
772 {
773 mlpoisson_jacobi_os(i, j, k, solnfab, rhsfab, axfab,
774 osm, dhx, dhy, dhz,
775 f0fab, m0,
776 f1fab, m1,
777 f2fab, m2,
778 f3fab, m3,
779 f4fab, m4,
780 f5fab, m5,
781 vbx);
782 });
783 }
784 } else if (this->hasHiddenDimension()) {
785 Box const& tbx_2d = this->compactify(tbx);
786 Box const& vbx_2d = this->compactify(vbx);
787 const auto& solnfab_2d = this->compactify(solnfab);
788 const auto& rhsfab_2d = this->compactify(rhsfab);
789 const auto& f0fab_2d = this->compactify(this->get_d0(f0fab,f1fab,f2fab));
790 const auto& f1fab_2d = this->compactify(this->get_d1(f0fab,f1fab,f2fab));
791 const auto& f2fab_2d = this->compactify(this->get_d0(f3fab,f4fab,f5fab));
792 const auto& f3fab_2d = this->compactify(this->get_d1(f3fab,f4fab,f5fab));
793 const auto& m0_2d = this->compactify(this->get_d0(m0,m1,m2));
794 const auto& m1_2d = this->compactify(this->get_d1(m0,m1,m2));
795 const auto& m2_2d = this->compactify(this->get_d0(m3,m4,m5));
796 const auto& m3_2d = this->compactify(this->get_d1(m3,m4,m5));
797 if (this->m_use_gauss_seidel) {
798 AMREX_HOST_DEVICE_PARALLEL_FOR_3D ( tbx_2d, i, j, k,
799 {
800 TwoD::mlpoisson_gsrb(i, j, k, solnfab_2d, rhsfab_2d, dh0, dh1,
801 f0fab_2d, m0_2d,
802 f1fab_2d, m1_2d,
803 f2fab_2d, m2_2d,
804 f3fab_2d, m3_2d,
805 vbx_2d, redblack);
806 });
807 } else {
808 const auto& axfab = Ax.const_array(mfi);
809 const auto& axfab_2d = this->compactify(axfab);
810 AMREX_HOST_DEVICE_PARALLEL_FOR_3D ( tbx_2d, i, j, k,
811 {
812 TwoD::mlpoisson_jacobi(i, j, k, solnfab_2d, rhsfab_2d,
813 axfab_2d, dh0, dh1,
814 f0fab_2d, m0_2d,
815 f1fab_2d, m1_2d,
816 f2fab_2d, m2_2d,
817 f3fab_2d, m3_2d,
818 vbx_2d);
819 });
820 }
821 } else {
822 if (this->m_use_gauss_seidel) {
824 {
825 mlpoisson_gsrb(i, j, k, solnfab, rhsfab, dhx, dhy, dhz,
826 f0fab, m0,
827 f1fab, m1,
828 f2fab, m2,
829 f3fab, m3,
830 f4fab, m4,
831 f5fab, m5,
832 vbx, redblack);
833 });
834 } else {
835 const auto& axfab = Ax.const_array(mfi);
837 {
838 mlpoisson_jacobi(i, j, k, solnfab, rhsfab, axfab,
839 dhx, dhy, dhz,
840 f0fab, m0,
841 f1fab, m1,
842 f2fab, m2,
843 f3fab, m3,
844 f4fab, m4,
845 f5fab, m5,
846 vbx);
847 });
848 }
849 }
850#endif
851 }
852 }
853}
854
855template <typename MF>
856void
857MLPoissonT<MF>::FFlux (int amrlev, const MFIter& mfi,
858 const Array<FAB*,AMREX_SPACEDIM>& flux,
859 const FAB& sol, Location, const int face_only) const
860{
861 BL_PROFILE("MLPoisson::FFlux()");
862
863 const int mglev = 0;
864 const Box& box = mfi.tilebox();
865 const Real* dxinv = this->m_geom[amrlev][mglev].InvCellSize();
866
867 AMREX_D_TERM(const auto& fxarr = flux[0]->array();,
868 const auto& fyarr = flux[1]->array();,
869 const auto& fzarr = flux[2]->array(););
870 const auto& solarr = sol.array();
871
872#if (AMREX_SPACEDIM != 3)
873 const RT dx = RT(this->m_geom[amrlev][mglev].CellSize(0));
874 const RT probxlo = RT(this->m_geom[amrlev][mglev].ProbLo(0));
875#endif
876
877#if (AMREX_SPACEDIM == 3)
878 if (face_only) {
879 if (this->hiddenDirection() != 0) {
880 RT fac = RT(dxinv[0]);
881 Box blo = amrex::bdryLo(box, 0);
882 int blen = box.length(0);
884 {
885 mlpoisson_flux_xface(tbox, fxarr, solarr, fac, blen);
886 });
887 } else {
888 flux[0]->template setVal<RunOn::Device>(RT(0.0));
889 }
890 if (this->hiddenDirection() != 1) {
891 RT fac = RT(dxinv[1]);
892 Box blo = amrex::bdryLo(box, 1);
893 int blen = box.length(1);
895 {
896 mlpoisson_flux_yface(tbox, fyarr, solarr, fac, blen);
897 });
898 } else {
899 flux[1]->template setVal<RunOn::Device>(RT(0.0));
900 }
901 if (this->hiddenDirection() != 2) {
902 RT fac = RT(dxinv[2]);
903 Box blo = amrex::bdryLo(box, 2);
904 int blen = box.length(2);
906 {
907 mlpoisson_flux_zface(tbox, fzarr, solarr, fac, blen);
908 });
909 } else {
910 flux[2]->template setVal<RunOn::Device>(RT(0.0));
911 }
912 } else {
913 if (this->hiddenDirection() != 0) {
914 RT fac = RT(dxinv[0]);
915 Box bflux = amrex::surroundingNodes(box, 0);
917 {
918 mlpoisson_flux_x(tbox, fxarr, solarr, fac);
919 });
920 } else {
921 flux[0]->template setVal<RunOn::Device>(RT(0.0));
922 }
923 if (this->hiddenDirection() != 1) {
924 RT fac = RT(dxinv[1]);
925 Box bflux = amrex::surroundingNodes(box, 1);
927 {
928 mlpoisson_flux_y(tbox, fyarr, solarr, fac);
929 });
930 } else {
931 flux[1]->template setVal<RunOn::Device>(RT(0.0));
932 }
933 if (this->hiddenDirection() != 2) {
934 RT fac = RT(dxinv[2]);
935 Box bflux = amrex::surroundingNodes(box, 2);
937 {
938 mlpoisson_flux_z(tbox, fzarr, solarr, fac);
939 });
940 } else {
941 flux[2]->template setVal<RunOn::Device>(RT(0.0));
942 }
943 }
944#elif (AMREX_SPACEDIM == 2)
945 if (face_only) {
946 if (this->hiddenDirection() != 0) {
947 RT fac = RT(dxinv[0]);
948 Box blo = amrex::bdryLo(box, 0);
949 int blen = box.length(0);
950 if (this->m_has_metric_term) {
952 {
953 mlpoisson_flux_xface_m(tbox, fxarr, solarr, fac, blen, dx, probxlo);
954 });
955 } else {
957 {
958 mlpoisson_flux_xface(tbox, fxarr, solarr, fac, blen);
959 });
960 }
961 } else {
962 flux[0]->template setVal<RunOn::Device>(RT(0.0));
963 }
964 if (this->hiddenDirection() != 1) {
965 RT fac = RT(dxinv[1]);
966 Box blo = amrex::bdryLo(box, 1);
967 int blen = box.length(1);
968 if (this->m_has_metric_term) {
970 {
971 mlpoisson_flux_yface_m(tbox, fyarr, solarr, fac, blen, dx, probxlo);
972 });
973 } else {
975 {
976 mlpoisson_flux_yface(tbox, fyarr, solarr, fac, blen);
977 });
978 }
979 } else {
980 flux[1]->template setVal<RunOn::Device>(RT(0.0));
981 }
982 } else {
983 if (this->hiddenDirection() != 0) {
984 RT fac = RT(dxinv[0]);
985 Box bflux = amrex::surroundingNodes(box, 0);
986 if (this->m_has_metric_term) {
988 {
989 mlpoisson_flux_x_m(tbox, fxarr, solarr, fac, dx, probxlo);
990 });
991 } else {
993 {
994 mlpoisson_flux_x(tbox, fxarr, solarr, fac);
995 });
996 }
997 } else {
998 flux[0]->template setVal<RunOn::Device>(RT(0.0));
999 }
1000 if (this->hiddenDirection() != 1) {
1001 RT fac = RT(dxinv[1]);
1002 Box bflux = amrex::surroundingNodes(box, 1);
1003 if (this->m_has_metric_term) {
1005 {
1006 mlpoisson_flux_y_m(tbox, fyarr, solarr, fac, dx, probxlo);
1007 });
1008 } else {
1010 {
1011 mlpoisson_flux_y(tbox, fyarr, solarr, fac);
1012 });
1013 }
1014 } else {
1015 flux[1]->template setVal<RunOn::Device>(RT(0.0));
1016 }
1017 }
1018#else
1019 if (face_only) {
1020 RT fac = RT(dxinv[0]);
1021 Box blo = amrex::bdryLo(box, 0);
1022 int blen = box.length(0);
1023 if (this->m_has_metric_term) {
1025 {
1026 mlpoisson_flux_xface_m(tbox, fxarr, solarr, fac, blen, dx, probxlo);
1027 });
1028 } else {
1030 {
1031 mlpoisson_flux_xface(tbox, fxarr, solarr, fac, blen);
1032 });
1033 }
1034 } else {
1035 RT fac = RT(dxinv[0]);
1036 Box bflux = amrex::surroundingNodes(box, 0);
1037 if (this->m_has_metric_term) {
1039 {
1040 mlpoisson_flux_x_m(tbox, fxarr, solarr, fac, dx, probxlo);
1041 });
1042 } else {
1044 {
1045 mlpoisson_flux_x(tbox, fxarr, solarr, fac);
1046 });
1047 }
1048 }
1049#endif
1050}
1051
1052template <typename MF>
1053bool
1055{
1056 bool support = true;
1057 if (this->m_domain_covered[0]) { support = false; }
1058 if (this->doAgglomeration()) { support = false; }
1059 if (AMREX_SPACEDIM != 3) { support = false; }
1060 return support;
1061}
1062
1063template <typename MF>
1064std::unique_ptr<MLLinOpT<MF>>
1065MLPoissonT<MF>::makeNLinOp (int grid_size) const
1066{
1067 const Geometry& geom = this->m_geom[0].back();
1068 const BoxArray& ba = this->makeNGrids(grid_size);
1069
1071 {
1072 const std::vector<std::vector<int> >& sfc = DistributionMapping::makeSFC(ba);
1073 Vector<int> pmap(ba.size());
1075 const int nprocs = ParallelDescriptor::NProcs();
1076 for (int iproc = 0; iproc < nprocs; ++iproc) {
1077 for (int ibox : sfc[iproc]) {
1078 pmap[ibox] = iproc;
1079 }
1080 }
1081 dm.define(std::move(pmap));
1082 }
1083
1084 LPInfo minfo{};
1085 minfo.has_metric_term = this->info.has_metric_term;
1086
1087 std::unique_ptr<MLLinOpT<MF>> r{new MLALaplacianT<MF>({geom}, {ba}, {dm}, minfo)};
1088 auto nop = dynamic_cast<MLALaplacianT<MF>*>(r.get());
1089 if (!nop) {
1090 return nullptr;
1091 }
1092
1093 nop->m_parent = this;
1094
1095 nop->setMaxOrder(this->maxorder);
1096 nop->setVerbose(this->verbose);
1097
1098 nop->setDomainBC(this->m_lobc, this->m_hibc);
1099
1100 if (this->needsCoarseDataForBC())
1101 {
1102 const Real* dx0 = this->m_geom[0][0].CellSize();
1104 fac *= Real(0.5);
1105 RealVect cbloc {AMREX_D_DECL(dx0[0]*fac[0], dx0[1]*fac[1], dx0[2]*fac[2])};
1106 nop->setCoarseFineBCLocation(cbloc);
1107 }
1108
1109 nop->setScalars(1.0, -1.0);
1110
1111 const Real* dxinv = geom.InvCellSize();
1112 RT dxscale = RT(dxinv[0]);
1113#if (AMREX_SPACEDIM >= 2)
1114 dxscale = std::max(dxscale,RT(dxinv[1]));
1115#endif
1116#if (AMREX_SPACEDIM == 3)
1117 dxscale = std::max(dxscale,RT(dxinv[2]));
1118#endif
1119
1120 MF alpha(ba, dm, 1, 0);
1121 alpha.setVal(RT(1.e30)*dxscale*dxscale);
1122
1123 MF foo(this->m_grids[0].back(), this->m_dmap[0].back(), 1, 0, MFInfo().SetAlloc(false));
1124 const FabArrayBase::CPC& cpc = alpha.getCPC(IntVect(0),foo,IntVect(0),Periodicity::NonPeriodic());
1125 alpha.setVal(RT(0.0), cpc, 0, 1);
1126
1127 nop->setACoeffs(0, alpha);
1128
1129 return r;
1130}
1131
1132template <typename MF>
1133void
1134MLPoissonT<MF>::copyNSolveSolution (MF& dst, MF const& src) const
1135{
1136 dst.ParallelCopy(src);
1137}
1138
1139template <typename MF>
1140void
1142 MF const& phi)
1143{
1144 BL_PROFILE("MLPoisson::dpdn_faces()");
1145
1146 // We do not need to call applyBC because this function is used by the
1147 // OpenBC solver after solver has converged. That means the BC has been
1148 // filled to check the residual.
1149
1150 Box const& domain0 = this->m_geom[0][0].Domain();
1151 AMREX_D_TERM(const RT dxi = RT(this->m_geom[0][0].InvCellSize(0));,
1152 const RT dyi = RT(this->m_geom[0][0].InvCellSize(1));,
1153 const RT dzi = RT(this->m_geom[0][0].InvCellSize(2));)
1154
1155#ifdef AMREX_USE_OMP
1156#pragma omp parallel if (Gpu::notInLaunchRegion())
1157#endif
1158 for (MFIter mfi(phi); mfi.isValid(); ++mfi)
1159 {
1160 Box const& vbx = mfi.validbox();
1161 for (OrientationIter oit; oit.isValid(); ++oit) {
1162 Orientation face = oit();
1163 if (vbx[face] == domain0[face]) {
1164 int dir = face.coordDir();
1165 auto const& p = phi.const_array(mfi);
1166 auto const& gp = dpdn[dir]->array(mfi);
1167 Box const& b2d = amrex::bdryNode(vbx,face);
1168 if (dir == 0) {
1169 // because it's dphi/dn, not dphi/dx.
1170 RT fac = dxi * (face.isLow() ? RT(-1.0) : RT(1.));
1172 {
1173 gp(i,j,k) = fac * (p(i,j,k) - p(i-1,j,k));
1174 });
1175 }
1176#if (AMREX_SPACEDIM > 1)
1177 else if (dir == 1) {
1178 RT fac = dyi * (face.isLow() ? RT(-1.0) : RT(1.));
1180 {
1181 gp(i,j,k) = fac * (p(i,j,k) - p(i,j-1,k));
1182 });
1183 }
1184#if (AMREX_SPACEDIM > 2)
1185 else {
1186 RT fac = dzi * (face.isLow() ? RT(-1.0) : RT(1.));
1188 {
1189 gp(i,j,k) = fac * (p(i,j,k) - p(i,j,k-1));
1190 });
1191 }
1192#endif
1193#endif
1194 }
1195 }
1196 }
1197}
1198
1199extern template class MLPoissonT<MultiFab>;
1200
1202
1203}
1204
1205#endif
#define BL_PROFILE(a)
Definition AMReX_BLProfiler.H:551
#define AMREX_ASSERT(EX)
Definition AMReX_BLassert.H:38
#define AMREX_ALWAYS_ASSERT(EX)
Definition AMReX_BLassert.H:50
#define AMREX_HOST_DEVICE_PARALLEL_FOR_3D(...)
Definition AMReX_GpuLaunchMacrosC.nolint.H:110
#define AMREX_GPU_LAUNCH_HOST_DEVICE_LAMBDA_RANGE(TN, TI, block)
Definition AMReX_GpuLaunchMacrosC.nolint.H:4
#define AMREX_GPU_DEVICE
Definition AMReX_GpuQualifiers.H:18
#define AMREX_D_TERM(a, b, c)
Definition AMReX_SPACE.H:129
A collection of Boxes stored in an Array.
Definition AMReX_BoxArray.H:550
Long size() const noexcept
Return the number of boxes in the BoxArray.
Definition AMReX_BoxArray.H:597
AMREX_GPU_HOST_DEVICE IntVectND< dim > length() const noexcept
Return the length of the BoxND.
Definition AMReX_Box.H:146
const Real * InvCellSize() const noexcept
Returns the inverse cellsize for each coordinate direction.
Definition AMReX_CoordSys.H:82
Calculates the distribution of FABs to MPI processes.
Definition AMReX_DistributionMapping.H:41
void define(const BoxArray &boxes, int nprocs=ParallelDescriptor::NProcs())
Build mapping out of BoxArray over nprocs processors. You need to call this if you built your Distrib...
Definition AMReX_DistributionMapping.cpp:345
static DistributionMapping makeSFC(const MultiFab &weight, bool sort=true)
Definition AMReX_DistributionMapping.cpp:1764
Definition AMReX_FabFactory.H:50
Rectangular problem domain geometry.
Definition AMReX_Geometry.H:73
Definition AMReX_MFIter.H:57
Box tilebox() const noexcept
Return the tile Box at the current index.
Definition AMReX_MFIter.cpp:385
bool isValid() const noexcept
Is the iterator valid i.e. is it associated with a FAB?
Definition AMReX_MFIter.H:141
Definition AMReX_MLALaplacian.H:14
Definition AMReX_MLCellABecLap.H:13
Vector< Vector< std::unique_ptr< iMultiFab > > > m_overset_mask
Definition AMReX_MLCellABecLap.H:85
void define(const Vector< Geometry > &a_geom, const Vector< BoxArray > &a_grids, const Vector< DistributionMapping > &a_dmap, const LPInfo &a_info=LPInfo(), const Vector< FabFactory< FAB > const * > &a_factory={})
Definition AMReX_MLCellABecLap.H:94
void prepareForSolve() override
Definition AMReX_MLCellABecLap.H:247
BoxArray makeNGrids(int grid_size) const
Definition AMReX_MLCellLinOp.H:904
Vector< Vector< Array< MultiMask, 2 *AMREX_SPACEDIM > > > m_maskvals
Definition AMReX_MLCellLinOp.H:207
Vector< Vector< BndryRegisterT< MF > > > m_undrrelxr
Definition AMReX_MLCellLinOp.H:204
bool m_has_metric_term
Definition AMReX_MLCellLinOp.H:151
bool m_use_gauss_seidel
Definition AMReX_MLCellLinOp.H:213
T get_d0(T const &dx, T const &dy, T const &) const noexcept
Definition AMReX_MLLinOp.H:725
bool doAgglomeration() const noexcept
Definition AMReX_MLLinOp.H:680
Vector< Vector< BoxArray > > m_grids
Definition AMReX_MLLinOp.H:608
Vector< Vector< DistributionMapping > > m_dmap
Definition AMReX_MLLinOp.H:609
IntVect m_coarse_data_crse_ratio
Definition AMReX_MLLinOp.H:635
bool needsCoarseDataForBC() const noexcept
Needs coarse data for bc?
Definition AMReX_MLLinOp.H:177
bool hasHiddenDimension() const noexcept
Definition AMReX_MLLinOp.H:706
Vector< Array< BCType, AMREX_SPACEDIM > > m_lobc
Definition AMReX_MLLinOp.H:571
int hiddenDirection() const noexcept
Definition AMReX_MLLinOp.H:707
Vector< int > m_domain_covered
Definition AMReX_MLLinOp.H:611
const MLLinOpT< MF > * m_parent
Definition AMReX_MLLinOp.H:596
Vector< Vector< Geometry > > m_geom
first Vector is for amr level and second is mg level
Definition AMReX_MLLinOp.H:607
Box compactify(Box const &b) const noexcept
Definition AMReX_MLLinOp.H:1283
bool m_needs_coarse_data_for_bc
Definition AMReX_MLLinOp.H:633
int maxorder
Definition AMReX_MLLinOp.H:588
LPInfo info
Definition AMReX_MLLinOp.H:584
Vector< Array< BCType, AMREX_SPACEDIM > > m_hibc
Definition AMReX_MLLinOp.H:572
T get_d1(T const &, T const &dy, T const &dz) const noexcept
Definition AMReX_MLLinOp.H:735
LinOpBCType m_coarse_fine_bc_type
Definition AMReX_MLLinOp.H:634
int m_num_amr_levels
Definition AMReX_MLLinOp.H:592
Definition AMReX_MLPoisson.H:16
LinOpBCType BCType
Definition AMReX_MLPoisson.H:22
typename MF::value_type RT
Definition AMReX_MLPoisson.H:20
MLPoissonT< MF > & operator=(const MLPoissonT< MF > &)=delete
void copyNSolveSolution(MF &dst, MF const &src) const final
Definition AMReX_MLPoisson.H:1134
bool isBottomSingular() const final
Is the bottom of MG singular?
Definition AMReX_MLPoisson.H:59
void prepareForSolve() final
Definition AMReX_MLPoisson.H:140
void Fapply(int amrlev, int mglev, MF &out, const MF &in) const final
Definition AMReX_MLPoisson.H:182
void normalize(int amrlev, int mglev, MF &mf) const final
Divide mf by the diagonal component of the operator. Used by bicgstab.
Definition AMReX_MLPoisson.H:313
typename MF::fab_type FAB
Definition AMReX_MLPoisson.H:19
bool isSingular(int amrlev) const final
Is it singular on given AMR level?
Definition AMReX_MLPoisson.H:58
~MLPoissonT() override
MLPoissonT(const MLPoissonT< MF > &)=delete
bool supportNSolve() const final
Definition AMReX_MLPoisson.H:1054
MLPoissonT(MLPoissonT< MF > &&)=delete
void define(const Vector< Geometry > &a_geom, const Vector< BoxArray > &a_grids, const Vector< DistributionMapping > &a_dmap, const LPInfo &a_info=LPInfo(), const Vector< FabFactory< FAB > const * > &a_factory={})
Definition AMReX_MLPoisson.H:112
RT getAScalar() const final
Definition AMReX_MLPoisson.H:68
RT getBScalar() const final
Definition AMReX_MLPoisson.H:69
void get_dpdn_on_domain_faces(Array< MF *, AMREX_SPACEDIM > const &dpdn, MF const &phi)
Compute dphi/dn on domain faces after the solver has converged.
Definition AMReX_MLPoisson.H:1141
Array< MF const *, AMREX_SPACEDIM > getBCoeffs(int, int) const final
Definition AMReX_MLPoisson.H:71
MF const * getACoeffs(int, int) const final
Definition AMReX_MLPoisson.H:70
MLPoissonT()=default
Vector< int > m_is_singular
Definition AMReX_MLPoisson.H:86
void FFlux(int amrlev, const MFIter &mfi, const Array< FAB *, AMREX_SPACEDIM > &flux, const FAB &sol, Location loc, int face_only=0) const final
Definition AMReX_MLPoisson.H:857
typename MLLinOpT< MF >::Location Location
Definition AMReX_MLPoisson.H:23
void Fsmooth(int amrlev, int mglev, MF &sol, const MF &rhs, int redblack) const final
Definition AMReX_MLPoisson.H:366
std::unique_ptr< MLLinOpT< MF > > makeNLinOp(int grid_size) const final
Definition AMReX_MLPoisson.H:1065
Definition AMReX_MultiMask.H:18
MultiArray4< int const > const_arrays() const noexcept
Definition AMReX_MultiMask.H:48
Array4< int const > array(const MFIter &mfi) const noexcept
Definition AMReX_MultiMask.H:40
An Iterator over the Orientation of Faces of a Box.
Definition AMReX_Orientation.H:135
AMREX_GPU_HOST_DEVICE bool isValid() const noexcept
Is the iterator valid?
Definition AMReX_Orientation.H:156
Encapsulation of the Orientation of the Faces of a Box.
Definition AMReX_Orientation.H:29
AMREX_GPU_HOST_DEVICE int coordDir() const noexcept
Returns the coordinate direction.
Definition AMReX_Orientation.H:83
AMREX_GPU_HOST_DEVICE bool isLow() const noexcept
Returns true if Orientation is low.
Definition AMReX_Orientation.H:89
static const Periodicity & NonPeriodic() noexcept
Definition AMReX_Periodicity.cpp:52
A Real vector in SpaceDim-dimensional space.
Definition AMReX_RealVect.H:32
This class is a thin wrapper around std::vector. Unlike vector, Vector::operator[] provides bound che...
Definition AMReX_Vector.H:27
void streamSynchronize() noexcept
Definition AMReX_GpuDevice.H:237
bool inLaunchRegion() noexcept
Definition AMReX_GpuControl.H:86
bool notInLaunchRegion() noexcept
Definition AMReX_GpuControl.H:87
MPI_Comm CommunicatorSub() noexcept
sub-communicator for current frame
Definition AMReX_ParallelContext.H:70
MPI_Comm Communicator() noexcept
Definition AMReX_ParallelDescriptor.H:210
int NProcs() noexcept
return the number of MPI ranks local to the current Parallel Context
Definition AMReX_ParallelDescriptor.H:243
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_jacobi(int i, int j, int, Array4< T > const &phi, Array4< T const > const &rhs, Array4< T const > const &Ax, T dhx, T dhy, Array4< T const > const &f0, Array4< int const > const &m0, Array4< T const > const &f1, Array4< int const > const &m1, Array4< T const > const &f2, Array4< int const > const &m2, Array4< T const > const &f3, Array4< int const > const &m3, Box const &vbox) noexcept
Definition AMReX_MLPoisson_2D_K.H:310
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_adotx(int i, int j, Array4< T > const &y, Array4< T const > const &x, T dhx, T dhy) noexcept
Definition AMReX_MLPoisson_2D_K.H:13
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_gsrb(int i, int j, int, Array4< T > const &phi, Array4< T const > const &rhs, T dhx, T dhy, Array4< T const > const &f0, Array4< int const > const &m0, Array4< T const > const &f1, Array4< int const > const &m1, Array4< T const > const &f2, Array4< int const > const &m2, Array4< T const > const &f3, Array4< int const > const &m3, Box const &vbox, int redblack) noexcept
Definition AMReX_MLPoisson_2D_K.H:197
Definition AMReX_Amr.cpp:49
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_flux_yface(Box const &box, Array4< T > const &fy, Array4< T const > const &sol, T dyinv, int ylen) noexcept
Definition AMReX_MLPoisson_3D_K.H:90
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_jacobi(int i, int, int, Array4< T > const &phi, Array4< T const > const &rhs, Array4< T const > const &Ax, T dhx, Array4< T const > const &f0, Array4< int const > const &m0, Array4< T const > const &f1, Array4< int const > const &m1, Box const &vbox) noexcept
Definition AMReX_MLPoisson_1D_K.H:193
std::enable_if_t< std::is_integral_v< T > > ParallelFor(TypeList< CTOs... > ctos, std::array< int, sizeof...(CTOs)> const &runtime_options, T N, F &&f)
Definition AMReX_CTOParallelForImpl.H:191
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_adotx_m(int i, Array4< T > const &y, Array4< T const > const &x, T dhx, T dx, T probxlo) noexcept
Definition AMReX_MLPoisson_1D_K.H:32
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_gsrb_m(int i, int, int, Array4< T > const &phi, Array4< T const > const &rhs, T dhx, Array4< T const > const &f0, Array4< int const > const &m0, Array4< T const > const &f1, Array4< int const > const &m1, Box const &vbox, int redblack, T dx, T probxlo) noexcept
Definition AMReX_MLPoisson_1D_K.H:162
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE BoxND< dim > surroundingNodes(const BoxND< dim > &b, int dir) noexcept
Returns a BoxND with NODE based coordinates in direction dir that encloses BoxND b....
Definition AMReX_Box.H:1399
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE BoxND< dim > bdryNode(const BoxND< dim > &b, Orientation face, int len=1) noexcept
Similar to bdryLo and bdryHi except that it operates on the given face of box b.
Definition AMReX_Box.H:1549
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_flux_x(Box const &box, Array4< T > const &fx, Array4< T const > const &sol, T dxinv) noexcept
Definition AMReX_MLPoisson_1D_K.H:43
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_adotx(int i, Array4< T > const &y, Array4< T const > const &x, T dhx) noexcept
Definition AMReX_MLPoisson_1D_K.H:9
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_flux_y(Box const &box, Array4< T > const &fy, Array4< T const > const &sol, T dyinv) noexcept
Definition AMReX_MLPoisson_3D_K.H:72
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_flux_xface_m(Box const &box, Array4< T > const &fx, Array4< T const > const &sol, T dxinv, int xlen, T dx, T probxlo) noexcept
Definition AMReX_MLPoisson_1D_K.H:86
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_jacobi_os(int i, int, int, Array4< T > const &phi, Array4< T const > const &rhs, Array4< T const > const &Ax, Array4< int const > const &osm, T dhx, Array4< T const > const &f0, Array4< int const > const &m0, Array4< T const > const &f1, Array4< int const > const &m1, Box const &vbox) noexcept
Definition AMReX_MLPoisson_1D_K.H:216
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_flux_x_m(Box const &box, Array4< T > const &fx, Array4< T const > const &sol, T dxinv, T dx, T probxlo) noexcept
Definition AMReX_MLPoisson_1D_K.H:57
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_gsrb(int i, int, int, Array4< T > const &phi, Array4< T const > const &rhs, T dhx, Array4< T const > const &f0, Array4< int const > const &m0, Array4< T const > const &f1, Array4< int const > const &m1, Box const &vbox, int redblack) noexcept
Definition AMReX_MLPoisson_1D_K.H:102
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE Dim3 end(BoxND< dim > const &box) noexcept
Definition AMReX_Box.H:1890
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_flux_xface(Box const &box, Array4< T > const &fx, Array4< T const > const &sol, T dxinv, int xlen) noexcept
Definition AMReX_MLPoisson_1D_K.H:73
IntVectND< AMREX_SPACEDIM > IntVect
Definition AMReX_BaseFwd.H:30
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE BoxND< dim > bdryLo(const BoxND< dim > &b, int dir, int len=1) noexcept
Returns the edge-centered BoxND (in direction dir) defining the low side of BoxND b.
Definition AMReX_Box.H:1502
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void ignore_unused(const Ts &...)
This shuts up the compiler about unused variables.
Definition AMReX.H:111
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_normalize(int i, int, int, Array4< T > const &x, T dhx, T dx, T probxlo) noexcept
Definition AMReX_MLPoisson_1D_K.H:268
bool TilingIfNotGPU() noexcept
Definition AMReX_MFIter.H:12
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_gsrb_os(int i, int, int, Array4< T > const &phi, Array4< T const > const &rhs, Array4< int const > const &osm, T dhx, Array4< T const > const &f0, Array4< int const > const &m0, Array4< T const > const &f1, Array4< int const > const &m1, Box const &vbox, int redblack) noexcept
Definition AMReX_MLPoisson_1D_K.H:130
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE Dim3 begin(BoxND< dim > const &box) noexcept
Definition AMReX_Box.H:1881
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_flux_zface(Box const &box, Array4< T > const &fz, Array4< T const > const &sol, T dzinv, int zlen) noexcept
Definition AMReX_MLPoisson_3D_K.H:130
int verbose
Definition AMReX_DistributionMapping.cpp:36
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_adotx_os(int i, Array4< T > const &y, Array4< T const > const &x, Array4< int const > const &osm, T dhx) noexcept
Definition AMReX_MLPoisson_1D_K.H:18
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_flux_z(Box const &box, Array4< T > const &fz, Array4< T const > const &sol, T dzinv) noexcept
Definition AMReX_MLPoisson_3D_K.H:112
std::array< T, N > Array
Definition AMReX_Array.H:24
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void mlpoisson_jacobi_m(int i, int, int, Array4< T > const &phi, Array4< T const > const &rhs, Array4< T const > const &Ax, T dhx, Array4< T const > const &f0, Array4< int const > const &m0, Array4< T const > const &f1, Array4< int const > const &m1, Box const &vbox, T dx, T probxlo) noexcept
Definition AMReX_MLPoisson_1D_K.H:242
parallel copy or add
Definition AMReX_FabArrayBase.H:536
Definition AMReX_MLLinOp.H:35
bool has_metric_term
Definition AMReX_MLLinOp.H:43
Location
Definition AMReX_MLLinOp.H:87
FabArray memory allocation information.
Definition AMReX_FabArray.H:66
Definition AMReX_MFIter.H:20
MFItInfo & SetDynamic(bool f) noexcept
Definition AMReX_MFIter.H:34
MFItInfo & EnableTiling(const IntVect &ts=FabArrayBase::mfiter_tile_size) noexcept
Definition AMReX_MFIter.H:29