References

[1]

A. S. Almgren, J. B. Bell, and W. Y. Crutchfield. Approximate projection methods: part I. Inviscid analysis. SIAM J. Sci. Comput., 22(4):1139–59, 2000.

[2]

A. S. Almgren, J. B. Bell, and W. G. Szymczak. A numerical method for the incompressible Navier-Stokes equations based on an approximate projection. SIAM J. Sci. Comput., 17(2):358–369, March 1996.

[3]

J. B. Bell, P. Colella, and L. H. Howell. An efficient second-order projection method for viscous incompressible flow. In Proceedings of the Tenth AIAA Computational Fluid Dynamics Conference, 360–367. AIAA, June 1991.

[4]

J. B. Bell and D. L. Marcus. A second-order projection method for variable-density flows. Journal of Computational Physics, 101:334–348, 1992.

[5]

Randall J LeVeque. Finite volume methods for hyperbolic problems. Volume 31. Cambridge university press, 2002.

[6]

A. Nonaka, S. May, A. S. Almgren, and J. B. Bell. A three-dimensional, unsplit godunov method for scalar conservation laws. SIAM Journal on Scientific Computing, 33(4):2039–2062, 2011. URL: https://ccse.lbl.gov/Publications/nonaka/BDS_3d.pdf, arXiv:https://doi.org/10.1137/100809520, doi:10.1137/100809520.

[7]

Jeff Saltzman. An unsplit 3d upwind method for hyperbolic conservation laws. Journal of Computational Physics, 115(1):153–168, 1994. URL: https://www.sciencedirect.com/science/article/pii/S0021999184711843, doi:https://doi.org/10.1006/jcph.1994.1184.

[8]

P. Colella. Multidimensional upwind methods for hyperbolic conservation laws. Journal of Computational Physics, 87:171–200, March 1990. doi:10.1016/0021-9991(90)90233-Q.

[9]

P. Colella and H. M. Glaz. Efficient solution algorithms for the Riemann problem for real gases. Journal of Computational Physics, 59:264–289, June 1985. doi:10.1016/0021-9991(85)90146-9.

[10]

P. Colella and P. R. Woodward. The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations. Journal of Computational Physics, 54:174–201, September 1984. doi:10.1016/0021-9991(84)90143-8.

[11]

G. H. Miller and P. Colella. A Conservative Three-Dimensional Eulerian Method for Coupled Solid-Fluid Shock Capturing. Journal of Computational Physics, 183:26–82, November 2002. doi:10.1006/jcph.2002.7158.

[12]

Bram Van Leer. Towards the ultimate conservative difference scheme. iv. a new approach to numerical convection. Journal of Computational Physics, 23(3):276–299, 1977. URL: https://www.sciencedirect.com/science/article/pii/002199917790095X, doi:https://doi.org/10.1016/0021-9991(77)90095-X.