Block-Structured AMR Software Framework
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
Loading...
Searching...
No Matches
AMReX_MLLinOp.H
Go to the documentation of this file.
1#ifndef AMREX_ML_LINOP_H_
2#define AMREX_ML_LINOP_H_
3#include <AMReX_Config.H>
4
5#if defined(AMREX_USE_HYPRE) && (AMREX_SPACEDIM > 1)
6#include <AMReX_Hypre.H>
8#endif
9
10#if defined(AMREX_USE_PETSC) && (AMREX_SPACEDIM > 1)
11#include <AMReX_PETSc.H>
12#endif
13
14#ifdef AMREX_USE_EB
16#include <AMReX_MultiCutFab.H>
17#endif
18
19#include <AMReX_Any.H>
20#include <AMReX_BndryRegister.H>
21#include <AMReX_FabDataType.H>
22#include <AMReX_MLMGBndry.H>
23#include <AMReX_MultiFabUtil.H>
24
25#include <algorithm>
26#include <string>
27
28namespace amrex {
29
30enum class BottomSolver : int {
32};
33
34struct LPInfo
35{
36 bool do_agglomeration = true;
37 bool do_consolidation = true;
38 bool do_semicoarsening = false;
39 int agg_grid_size = -1;
40 int con_grid_size = -1;
41 int con_ratio = 2;
42 int con_strategy = 3;
43 bool has_metric_term = true;
48
49 LPInfo& setAgglomeration (bool x) noexcept { do_agglomeration = x; return *this; }
50 LPInfo& setConsolidation (bool x) noexcept { do_consolidation = x; return *this; }
51 LPInfo& setSemicoarsening (bool x) noexcept { do_semicoarsening = x; return *this; }
52 LPInfo& setAgglomerationGridSize (int x) noexcept { agg_grid_size = x; return *this; }
53 LPInfo& setConsolidationGridSize (int x) noexcept { con_grid_size = x; return *this; }
54 LPInfo& setConsolidationRatio (int x) noexcept { con_ratio = x; return *this; }
55 LPInfo& setConsolidationStrategy (int x) noexcept { con_strategy = x; return *this; }
56 LPInfo& setMetricTerm (bool x) noexcept { has_metric_term = x; return *this; }
57 LPInfo& setMaxCoarseningLevel (int n) noexcept { max_coarsening_level = n; return *this; }
58 LPInfo& setMaxSemicoarseningLevel (int n) noexcept { max_semicoarsening_level = n; return *this; }
59 LPInfo& setSemicoarseningDirection (int n) noexcept { semicoarsening_direction = n; return *this; }
60 LPInfo& setHiddenDirection (int n) noexcept { hidden_direction = n; return *this; }
61
62 [[nodiscard]] bool hasHiddenDimension () const noexcept {
63 return hidden_direction >=0 && hidden_direction < AMREX_SPACEDIM;
64 }
65
66 static constexpr int getDefaultAgglomerationGridSize () {
67#ifdef AMREX_USE_GPU
68 return 32;
69#else
70 return AMREX_D_PICK(32, 16, 8);
71#endif
72 }
73
74 static constexpr int getDefaultConsolidationGridSize () {
75#ifdef AMREX_USE_GPU
76 return 32;
77#else
78 return AMREX_D_PICK(32, 16, 8);
79#endif
80 }
81};
82
89
90template <typename T> class MLMGT;
91template <typename T> class MLCGSolverT;
92template <typename T> class MLPoissonT;
93template <typename T> class MLABecLaplacianT;
94template <typename T> class GMRESMLMGT;
95
96template <typename MF>
98{
99public:
100
101 template <typename T> friend class MLMGT;
102 template <typename T> friend class MLCGSolverT;
103 template <typename T> friend class MLPoissonT;
104 template <typename T> friend class MLABecLaplacianT;
105 template <typename T> friend class GMRESMLMGT;
106
107 using MFType = MF;
110
111 using BCType = LinOpBCType;
115
116 MLLinOpT () = default;
117 virtual ~MLLinOpT () = default;
118
119 MLLinOpT (const MLLinOpT<MF>&) = delete;
120 MLLinOpT (MLLinOpT<MF>&&) = delete;
123
124 void define (const Vector<Geometry>& a_geom,
125 const Vector<BoxArray>& a_grids,
126 const Vector<DistributionMapping>& a_dmap,
127 const LPInfo& a_info,
128 const Vector<FabFactory<FAB> const*>& a_factory,
129 bool eb_limit_coarsening = true);
130
131 [[nodiscard]] virtual std::string name () const { return std::string("Unspecified"); }
132
144 const Array<BCType,AMREX_SPACEDIM>& hibc) noexcept;
145
156 const Vector<Array<BCType,AMREX_SPACEDIM> >& hibc) noexcept;
157
168 const Array<Real,AMREX_SPACEDIM>& hi_bcloc) noexcept;
169
177 [[nodiscard]] bool needsCoarseDataForBC () const noexcept { return m_needs_coarse_data_for_bc; }
178
200 void setCoarseFineBC (const MF* crse, int crse_ratio,
201 LinOpBCType bc_type = LinOpBCType::Dirichlet) noexcept;
202
203 void setCoarseFineBC (const MF* crse, IntVect const& crse_ratio,
204 LinOpBCType bc_type = LinOpBCType::Dirichlet) noexcept;
205
206 template <typename AMF, std::enable_if_t<!std::is_same_v<MF,AMF>,int> = 0>
207 void setCoarseFineBC (const AMF* crse, int crse_ratio,
208 LinOpBCType bc_type = LinOpBCType::Dirichlet) noexcept;
209
210 template <typename AMF, std::enable_if_t<!std::is_same_v<MF,AMF>,int> = 0>
211 void setCoarseFineBC (const AMF* crse, IntVect const& crse_ratio,
212 LinOpBCType bc_type = LinOpBCType::Dirichlet) noexcept;
213
232 virtual void setLevelBC (int /*amrlev*/, const MF* /*levelbcdata*/,
233 const MF* /*robinbc_a*/ = nullptr,
234 const MF* /*robinbc_b*/ = nullptr,
235 const MF* /*robinbc_f*/ = nullptr) = 0;
236
237 template <typename AMF, std::enable_if_t<!std::is_same_v<MF,AMF>,int> = 0>
238 void setLevelBC (int amrlev, const AMF* levelbcdata,
239 const AMF* robinbc_a = nullptr,
240 const AMF* robinbc_b = nullptr,
241 const AMF* robinbc_f = nullptr);
242
244 void setVerbose (int v) noexcept { verbose = v; }
245
247 void setMaxOrder (int o) noexcept { maxorder = o; }
249 [[nodiscard]] int getMaxOrder () const noexcept { return maxorder; }
250
256 [[nodiscard]] bool getEnforceSingularSolvable () const noexcept { return enforceSingularSolvable; }
257
258 [[nodiscard]] virtual BottomSolver getDefaultBottomSolver () const { return BottomSolver::bicgstab; }
259
261 [[nodiscard]] virtual int getNComp () const { return 1; }
262
263 [[nodiscard]] virtual int getNGrow (int /*a_lev*/ = 0, int /*mg_lev*/ = 0) const { return 0; }
264
266 [[nodiscard]] virtual bool needsUpdate () const { return false; }
268 virtual void update () {}
269
279 virtual void restriction (int amrlev, int cmglev, MF& crse, MF& fine) const = 0;
280
289 virtual void interpolation (int amrlev, int fmglev, MF& fine, const MF& crse) const = 0;
290
299 virtual void interpAssign (int amrlev, int fmglev, MF& fine, MF& crse) const
300 {
301 amrex::ignore_unused(amrlev, fmglev, fine, crse);
302 amrex::Abort("MLLinOpT::interpAssign: Must be implemented for FMG cycle");
303 }
304
313 virtual void interpolationAmr (int famrlev, MF& fine, const MF& crse,
314 IntVect const& nghost) const
315 {
316 amrex::ignore_unused(famrlev, fine, crse, nghost);
317 amrex::Abort("MLLinOpT::interpolationAmr: Must be implemented for composite solves across multiple AMR levels");
318 }
319
329 virtual void averageDownSolutionRHS (int camrlev, MF& crse_sol, MF& crse_rhs,
330 const MF& fine_sol, const MF& fine_rhs)
331 {
332 amrex::ignore_unused(camrlev, crse_sol, crse_rhs, fine_sol, fine_rhs);
333 amrex::Abort("MLLinOpT::averageDownSolutionRHS: Must be implemented for composite solves across multiple AMR levels");
334 }
335
347 virtual void apply (int amrlev, int mglev, MF& out, MF& in, BCMode bc_mode,
348 StateMode s_mode, const MLMGBndryT<MF>* bndry=nullptr) const = 0;
349
360 virtual void smooth (int amrlev, int mglev, MF& sol, const MF& rhs,
361 bool skip_fillboundary, int niter) const = 0;
362
364 virtual void normalize (int amrlev, int mglev, MF& mf) const {
365 amrex::ignore_unused(amrlev, mglev, mf);
366 }
367
377 virtual void solutionResidual (int amrlev, MF& resid, MF& x, const MF& b,
378 const MF* crse_bcdata=nullptr) = 0;
379
380 virtual void prepareForFluxes (int /*amrlev*/, const MF* /*crse_bcdata*/ = nullptr) {}
381
393 virtual void correctionResidual (int amrlev, int mglev, MF& resid, MF& x, const MF& b,
394 BCMode bc_mode, const MF* crse_bcdata=nullptr) = 0;
395
407 virtual void reflux (int crse_amrlev,
408 MF& res, const MF& crse_sol, const MF& crse_rhs,
409 MF& fine_res, MF& fine_sol, const MF& fine_rhs) const
410 {
411 amrex::ignore_unused(crse_amrlev, res, crse_sol, crse_rhs, fine_res,
412 fine_sol, fine_rhs);
413 amrex::Abort("MLLinOpT::reflux: Must be implemented for composite solves across multiple AMR levels");
414 }
415
424 virtual void compFlux (int /*amrlev*/, const Array<MF*,AMREX_SPACEDIM>& /*fluxes*/,
425 MF& /*sol*/, Location /*loc*/) const
426 {
427 amrex::Abort("AMReX_MLLinOp::compFlux::How did we get here?");
428 }
429
438 virtual void compGrad (int /*amrlev*/, const Array<MF*,AMREX_SPACEDIM>& /*grad*/,
439 MF& /*sol*/, Location /*loc*/) const
440 {
441 amrex::Abort("AMReX_MLLinOp::compGrad::How did we get here?");
442 }
443
445 virtual void applyMetricTerm (int /*amrlev*/, int /*mglev*/, MF& /*rhs*/) const {}
447 virtual void unapplyMetricTerm (int /*amrlev*/, int /*mglev*/, MF& /*rhs*/) const {}
448
450 virtual void unimposeNeumannBC (int /*amrlev*/, MF& /*rhs*/) const {}
451
453 virtual void applyInhomogNeumannTerm (int /*amrlev*/, MF& /*rhs*/) const {}
454
456 virtual void applyOverset (int /*amlev*/, MF& /*rhs*/) const {}
457
459 [[nodiscard]] virtual bool scaleRHS (int /*amrlev*/, MF* /*rhs*/) const {
460 return false;
461 }
462
464 virtual Vector<RT> getSolvabilityOffset (int /*amrlev*/, int /*mglev*/,
465 MF const& /*rhs*/) const { return {}; }
466
468 virtual void fixSolvabilityByOffset (int /*amrlev*/, int /*mglev*/, MF& /*rhs*/,
469 Vector<RT> const& /*offset*/) const {}
470
471 virtual void prepareForSolve () = 0;
472
473 virtual void preparePrecond () {}
474
477 virtual void setDirichletNodesToZero (int /*amrlev*/, int /*mglev*/,
478 MF& /*mf*/) const
479 {
480 amrex::Warning("This function might need to be implemented for GMRES to work with this LinOp.");
481 }
482
484 [[nodiscard]] virtual bool isSingular (int amrlev) const = 0;
486 [[nodiscard]] virtual bool isBottomSingular () const = 0;
487
489 virtual RT xdoty (int amrlev, int mglev, const MF& x, const MF& y, bool local) const = 0;
490
491 virtual RT dotProductPrecond (Vector<MF const*> const& x, Vector<MF const*> const& y) const;
492
493 virtual RT norm2Precond (Vector<MF const*> const& x) const;
494
495 virtual std::unique_ptr<MLLinOpT<MF>> makeNLinOp (int /*grid_size*/) const
496 {
497 amrex::Abort("MLLinOp::makeNLinOp: N-Solve not supported");
498 return nullptr;
499 }
500
501 virtual void getFluxes (const Vector<Array<MF*,AMREX_SPACEDIM> >& /*a_flux*/,
502 const Vector<MF*>& /*a_sol*/,
503 Location /*a_loc*/) const {
504 amrex::Abort("MLLinOp::getFluxes: How did we get here?");
505 }
506 virtual void getFluxes (const Vector<MF*>& /*a_flux*/,
507 const Vector<MF*>& /*a_sol*/) const {
508 amrex::Abort("MLLinOp::getFluxes: How did we get here?");
509 }
510
511#ifdef AMREX_USE_EB
512 virtual void getEBFluxes (const Vector<MF*>& /*a_flux*/,
513 const Vector<MF*>& /*a_sol*/) const {
514 amrex::Abort("MLLinOp::getEBFluxes: How did we get here?");
515 }
516#endif
517
518#if defined(AMREX_USE_HYPRE) && (AMREX_SPACEDIM > 1)
519 [[nodiscard]] virtual std::unique_ptr<Hypre> makeHypre (Hypre::Interface /*hypre_interface*/) const {
520 amrex::Abort("MLLinOp::makeHypre: How did we get here?");
521 return {nullptr};
522 }
523 [[nodiscard]] virtual std::unique_ptr<HypreNodeLap> makeHypreNodeLap(
524 int /*bottom_verbose*/,
525 const std::string& /* options_namespace */) const
526 {
527 amrex::Abort("MLLinOp::makeHypreNodeLap: How did we get here?");
528 return {nullptr};
529 }
530#endif
531
532#if defined(AMREX_USE_PETSC) && (AMREX_SPACEDIM > 1)
533 [[nodiscard]] virtual std::unique_ptr<PETScABecLap> makePETSc () const {
534 amrex::Abort("MLLinOp::makePETSc: How did we get here?");
535 return {nullptr};
536 }
537#endif
538
539 [[nodiscard]] virtual bool supportNSolve () const { return false; }
540
541 virtual void copyNSolveSolution (MF&, MF const&) const {}
542
543 virtual void postSolve (Vector<MF*> const& /*sol*/) const {}
544
545 [[nodiscard]] virtual RT normInf (int amrlev, MF const& mf, bool local) const = 0;
546
547 virtual void averageDownAndSync (Vector<MF>& sol) const = 0;
548
549 virtual void avgDownResAmr (int clev, MF& cres, MF const& fres) const
550 {
551 amrex::ignore_unused(clev, cres, fres);
552 amrex::Abort("MLLinOpT::avgDownResAmr: Must be implemented for composite solves across multiple AMR levels");
553 }
554
555 // This function is needed for FMG cycle, but not V-cycle.
556 virtual void avgDownResMG (int clev, MF& cres, MF const& fres) const;
557
558 virtual void beginPrecondBC () { m_precond_mode = true; }
559 virtual void endPrecondBC () { m_precond_mode = false; }
560
561 [[nodiscard]] bool isMFIterSafe (int amrlev, int mglev1, int mglev2) const;
562
564 [[nodiscard]] int NAMRLevels () const noexcept { return m_num_amr_levels; }
565
567 [[nodiscard]] int NMGLevels (int amrlev) const noexcept { return m_num_mg_levels[amrlev]; }
568
569 [[nodiscard]] const Geometry& Geom (int amr_lev, int mglev=0) const noexcept { return m_geom[amr_lev][mglev]; }
570
571 // BC
574 // Need to save the original copy because we change the BC type to
575 // Neumann for inhomogeneous Neumann and Robin.
578
579protected:
580
581 static constexpr int mg_coarsen_ratio = 2;
582 static constexpr int mg_box_min_width = 2;
584
586
587 int verbose = 0;
588
589 int maxorder = 3;
590
592
595
597 const MLLinOpT<MF>* m_parent = nullptr;
598
600
601 bool m_do_agglomeration = false;
602 bool m_do_consolidation = false;
603
606
613
618 CommContainer (MPI_Comm m) noexcept : comm(m) {}
619 CommContainer (const CommContainer&) = delete;
621 void operator= (const CommContainer&) = delete;
622 void operator= (CommContainer&&) = delete;
623 ~CommContainer () { // NOLINT(modernize-use-equals-default)
624#ifdef BL_USE_MPI
625 if (comm != MPI_COMM_NULL) { MPI_Comm_free(&comm); }
626#endif
627 }
628 };
629 std::unique_ptr<CommContainer> m_raii_comm;
630
633
635 LinOpBCType m_coarse_fine_bc_type = LinOpBCType::Dirichlet;
638 const MF* m_coarse_data_for_bc = nullptr;
640
641 bool m_precond_mode = false;
642
644 [[nodiscard]] const Vector<int>& AMRRefRatio () const noexcept { return m_amr_ref_ratio; }
645
647 [[nodiscard]] int AMRRefRatio (int amr_lev) const noexcept { return m_amr_ref_ratio[amr_lev]; }
648
649 [[nodiscard]] FabFactory<FAB> const* Factory (int amr_lev, int mglev=0) const noexcept {
650 return m_factory[amr_lev][mglev].get();
651 }
652
653 [[nodiscard]] GpuArray<BCType,AMREX_SPACEDIM> LoBC (int icomp = 0) const noexcept {
655 m_lobc[icomp][1],
656 m_lobc[icomp][2])}};
657 }
658 [[nodiscard]] GpuArray<BCType,AMREX_SPACEDIM> HiBC (int icomp = 0) const noexcept {
660 m_hibc[icomp][1],
661 m_hibc[icomp][2])}};
662 }
663
664 [[nodiscard]] bool hasBC (BCType bct) const noexcept;
665 [[nodiscard]] bool hasInhomogNeumannBC () const noexcept;
666 [[nodiscard]] bool hasRobinBC () const noexcept;
667
668 [[nodiscard]] virtual bool supportRobinBC () const noexcept { return false; }
669 [[nodiscard]] virtual bool supportInhomogNeumannBC () const noexcept { return false; }
670
671#ifdef BL_USE_MPI
672 [[nodiscard]] bool isBottomActive () const noexcept { return m_bottom_comm != MPI_COMM_NULL; }
673#else
674 [[nodiscard]] bool isBottomActive () const noexcept { return true; }
675#endif
676 [[nodiscard]] MPI_Comm BottomCommunicator () const noexcept { return m_bottom_comm; }
677 [[nodiscard]] MPI_Comm Communicator () const noexcept { return m_default_comm; }
678
679 void setCoarseFineBCLocation (const RealVect& cloc) noexcept { m_coarse_bc_loc = cloc; }
680
681 [[nodiscard]] bool doAgglomeration () const noexcept { return m_do_agglomeration; }
682 [[nodiscard]] bool doConsolidation () const noexcept { return m_do_consolidation; }
683 [[nodiscard]] bool doSemicoarsening () const noexcept { return m_do_semicoarsening; }
684
685 [[nodiscard]] bool isCellCentered () const noexcept { return m_ixtype == 0; }
686
687 [[nodiscard]] virtual IntVect getNGrowVectRestriction () const {
688 return isCellCentered() ? IntVect(0) : IntVect(1);
689 }
690
691 virtual void make (Vector<Vector<MF> >& mf, IntVect const& ng) const;
692
693 [[nodiscard]] virtual MF make (int amrlev, int mglev, IntVect const& ng) const;
694
695 [[nodiscard]] virtual MF makeAlias (MF const& mf) const;
696
697 [[nodiscard]] virtual MF makeCoarseMG (int amrlev, int mglev, IntVect const& ng) const;
698
699 [[nodiscard]] virtual MF makeCoarseAmr (int famrlev, IntVect const& ng) const;
700
701 [[nodiscard]] virtual std::unique_ptr<FabFactory<FAB> > makeFactory (int /*amrlev*/, int /*mglev*/) const {
702 return std::make_unique<DefaultFabFactory<FAB>>();
703 }
704
705 virtual void resizeMultiGrid (int new_size);
706
707 [[nodiscard]] bool hasHiddenDimension () const noexcept { return info.hasHiddenDimension(); }
708 [[nodiscard]] int hiddenDirection () const noexcept { return info.hidden_direction; }
709 [[nodiscard]] Box compactify (Box const& b) const noexcept;
710
711 template <typename T>
712 [[nodiscard]] Array4<T> compactify (Array4<T> const& a) const noexcept
713 {
714 if (info.hidden_direction == 0) {
715 return Array4<T>(a.dataPtr(), {a.begin.y,a.begin.z,0}, {a.end.y,a.end.z,1}, a.nComp());
716 } else if (info.hidden_direction == 1) {
717 return Array4<T>(a.dataPtr(), {a.begin.x,a.begin.z,0}, {a.end.x,a.end.z,1}, a.nComp());
718 } else if (info.hidden_direction == 2) {
719 return Array4<T>(a.dataPtr(), {a.begin.x,a.begin.y,0}, {a.end.x,a.end.y,1}, a.nComp());
720 } else {
721 return a;
722 }
723 }
724
725 template <typename T>
726 [[nodiscard]] T get_d0 (T const& dx, T const& dy, T const&) const noexcept
727 {
728 if (info.hidden_direction == 0) {
729 return dy;
730 } else {
731 return dx;
732 }
733 }
734
735 template <typename T>
736 [[nodiscard]] T get_d1 (T const&, T const& dy, T const& dz) const noexcept
737 {
738 if (info.hidden_direction == 0 || info.hidden_direction == 1) {
739 return dz;
740 } else {
741 return dy;
742 }
743 }
744
745private:
746
747 void defineGrids (const Vector<Geometry>& a_geom,
748 const Vector<BoxArray>& a_grids,
749 const Vector<DistributionMapping>& a_dmap,
750 const Vector<FabFactory<FAB> const*>& a_factory);
751 void defineBC ();
754 int ratio, int strategy);
756
757 virtual void checkPoint (std::string const& /*file_name*/) const {
758 amrex::Abort("MLLinOp:checkPoint: not implemented");
759 }
760
765};
766
767template <typename MF>
768void
770 const Vector<BoxArray>& a_grids,
771 const Vector<DistributionMapping>& a_dmap,
772 const LPInfo& a_info,
773 const Vector<FabFactory<FAB> const*>& a_factory,
774 [[maybe_unused]] bool eb_limit_coarsening)
775{
776 BL_PROFILE("MLLinOp::define()");
777
778 info = a_info;
779#ifdef AMREX_USE_GPU
781 {
782 if (info.agg_grid_size <= 0) { info.agg_grid_size = AMREX_D_PICK(32, 16, 8); }
783 if (info.con_grid_size <= 0) { info.con_grid_size = AMREX_D_PICK(32, 16, 8); }
784 }
785 else
786#endif
787 {
788 if (info.agg_grid_size <= 0) { info.agg_grid_size = LPInfo::getDefaultAgglomerationGridSize(); }
789 if (info.con_grid_size <= 0) { info.con_grid_size = LPInfo::getDefaultConsolidationGridSize(); }
790 }
791
792#ifdef AMREX_USE_EB
793 if (!a_factory.empty() && eb_limit_coarsening) {
794 const auto *f = dynamic_cast<EBFArrayBoxFactory const*>(a_factory[0]);
795 if (f) {
796 info.max_coarsening_level = std::min(info.max_coarsening_level,
797 f->maxCoarseningLevel());
798 }
799 }
800#endif
801 defineGrids(a_geom, a_grids, a_dmap, a_factory);
802 defineBC();
803}
804
805template <typename MF>
806void
808 const Vector<BoxArray>& a_grids,
809 const Vector<DistributionMapping>& a_dmap,
810 const Vector<FabFactory<FAB> const*>& a_factory)
811{
812 BL_PROFILE("MLLinOp::defineGrids()");
813
814#ifdef AMREX_USE_EB
815 if ( ! a_factory.empty() ) {
816 auto const* ebf = dynamic_cast<EBFArrayBoxFactory const*>(a_factory[0]);
817 if (ebf && !(ebf->isAllRegular())) { // Has non-trivial EB
818 mg_domain_min_width = 4;
819 }
820 }
821#endif
822
823 m_num_amr_levels = 0;
824 for (int amrlev = 0; amrlev < a_geom.size(); amrlev++) {
825 if (!a_grids[amrlev].empty()) {
826 m_num_amr_levels++;
827 }
828 }
829
830 m_amr_ref_ratio.resize(m_num_amr_levels);
831 m_num_mg_levels.resize(m_num_amr_levels);
832
833 m_geom.resize(m_num_amr_levels);
834 m_grids.resize(m_num_amr_levels);
835 m_dmap.resize(m_num_amr_levels);
836 m_factory.resize(m_num_amr_levels);
837
838 m_default_comm = ParallelContext::CommunicatorSub();
839
840 const RealBox& rb = a_geom[0].ProbDomain();
841 const int coord = a_geom[0].Coord();
842 const Array<int,AMREX_SPACEDIM>& is_per = a_geom[0].isPeriodic();
843
844 IntVect mg_coarsen_ratio_v(mg_coarsen_ratio);
845 IntVect mg_box_min_width_v(mg_box_min_width);
846 IntVect mg_domain_min_width_v(mg_domain_min_width);
847 if (hasHiddenDimension()) {
848 AMREX_ASSERT_WITH_MESSAGE(AMREX_SPACEDIM == 3 && m_num_amr_levels == 1,
849 "Hidden direction only supported for 3d level solve");
850 mg_coarsen_ratio_v[info.hidden_direction] = 1;
851 mg_box_min_width_v[info.hidden_direction] = 0;
852 mg_domain_min_width_v[info.hidden_direction] = 0;
853 }
854
855 // fine amr levels
856 for (int amrlev = m_num_amr_levels-1; amrlev > 0; --amrlev)
857 {
858 m_num_mg_levels[amrlev] = 1;
859 m_geom[amrlev].push_back(a_geom[amrlev]);
860 m_grids[amrlev].push_back(a_grids[amrlev]);
861 m_dmap[amrlev].push_back(a_dmap[amrlev]);
862 if (amrlev < a_factory.size()) {
863 m_factory[amrlev].emplace_back(a_factory[amrlev]->clone());
864 } else {
865 m_factory[amrlev].push_back(std::make_unique<DefaultFabFactory<FAB>>());
866 }
867
868 IntVect rr = mg_coarsen_ratio_v;
869 const Box& dom = a_geom[amrlev].Domain();
870 for (int i = 0; i < 2; ++i)
871 {
872 if (!dom.coarsenable(rr)) { amrex::Abort("MLLinOp: Uncoarsenable domain"); }
873
874 const Box& cdom = amrex::coarsen(dom,rr);
875 if (cdom == a_geom[amrlev-1].Domain()) { break; }
876
877 ++(m_num_mg_levels[amrlev]);
878
879 m_geom[amrlev].emplace_back(cdom, rb, coord, is_per);
880
881 m_grids[amrlev].push_back(a_grids[amrlev]);
882 AMREX_ASSERT(m_grids[amrlev].back().coarsenable(rr));
883 m_grids[amrlev].back().coarsen(rr);
884
885 m_dmap[amrlev].push_back(a_dmap[amrlev]);
886
887 rr *= mg_coarsen_ratio_v;
888 }
889
890#if (AMREX_SPACEDIM > 1)
891 if (hasHiddenDimension()) {
892 m_amr_ref_ratio[amrlev-1] = rr[AMREX_SPACEDIM-info.hidden_direction];
893 } else
894#endif
895 {
896 m_amr_ref_ratio[amrlev-1] = rr[0];
897 }
898 }
899
900 // coarsest amr level
901 m_num_mg_levels[0] = 1;
902 m_geom[0].push_back(a_geom[0]);
903 m_grids[0].push_back(a_grids[0]);
904 m_dmap[0].push_back(a_dmap[0]);
905 if (!a_factory.empty()) {
906 m_factory[0].emplace_back(a_factory[0]->clone());
907 } else {
908 m_factory[0].push_back(std::make_unique<DefaultFabFactory<FAB>>());
909 }
910
911 m_domain_covered.resize(m_num_amr_levels, false);
912 auto npts0 = m_grids[0][0].numPts();
913 m_domain_covered[0] = (npts0 == compactify(m_geom[0][0].Domain()).numPts());
914 for (int amrlev = 1; amrlev < m_num_amr_levels; ++amrlev)
915 {
916 if (!m_domain_covered[amrlev-1]) { break; }
917 m_domain_covered[amrlev] = (m_grids[amrlev][0].numPts() ==
918 compactify(m_geom[amrlev][0].Domain()).numPts());
919 }
920
921 Box aggbox;
922 bool aggable = false;
923
924 if (m_grids[0][0].size() > 1 && info.do_agglomeration)
925 {
926 if (m_domain_covered[0])
927 {
928 aggbox = m_geom[0][0].Domain();
929 if (hasHiddenDimension()) {
930 aggbox.makeSlab(hiddenDirection(), m_grids[0][0][0].smallEnd(hiddenDirection()));
931 }
932 aggable = true;
933 }
934 else
935 {
936 aggbox = m_grids[0][0].minimalBox();
937 aggable = (aggbox.numPts() == npts0);
938 }
939 }
940
941 bool agged = false;
942 bool coned = false;
943 int agg_lev = 0, con_lev = 0;
944
945 AMREX_ALWAYS_ASSERT( ! (info.do_semicoarsening && info.hasHiddenDimension())
946 && info.semicoarsening_direction >= -1
947 && info.semicoarsening_direction < AMREX_SPACEDIM );
948
949 if (info.do_agglomeration && aggable)
950 {
951 Box dbx = m_geom[0][0].Domain();
952 Box bbx = aggbox;
953 Real const nbxs = static_cast<Real>(m_grids[0][0].size());
954 Real const threshold_npts = static_cast<Real>(AMREX_D_TERM(info.agg_grid_size,
955 *info.agg_grid_size,
956 *info.agg_grid_size));
957 Vector<Box> domainboxes{dbx};
958 Vector<Box> boundboxes{bbx};
959 Vector<int> agg_flag{false};
960 Vector<IntVect> accum_coarsen_ratio{IntVect(1)};
961 int numsclevs = 0;
962
963 for (int lev = 0; lev < info.max_coarsening_level; ++lev)
964 {
965 IntVect rr_level = mg_coarsen_ratio_v;
966 bool const do_semicoarsening_level = info.do_semicoarsening
967 && numsclevs < info.max_semicoarsening_level;
968 if (do_semicoarsening_level
969 && info.semicoarsening_direction != -1)
970 {
971 rr_level[info.semicoarsening_direction] = 1;
972 }
973 IntVect is_coarsenable;
974 for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
975 IntVect rr_dir(1);
976 rr_dir[idim] = rr_level[idim];
977 is_coarsenable[idim] = dbx.coarsenable(rr_dir, mg_domain_min_width_v)
978 && bbx.coarsenable(rr_dir, mg_box_min_width_v);
979 if (!is_coarsenable[idim] && do_semicoarsening_level
980 && info.semicoarsening_direction == -1)
981 {
982 is_coarsenable[idim] = true;
983 rr_level[idim] = 1;
984 }
985 }
986 if (is_coarsenable != IntVect(1) || rr_level == IntVect(1)) {
987 break;
988 }
989 if (do_semicoarsening_level && info.semicoarsening_direction == -1) {
990 // make sure there is at most one direction that is not coarsened
991 int n_ones = AMREX_D_TERM( static_cast<int>(rr_level[0] == 1),
992 + static_cast<int>(rr_level[1] == 1),
993 + static_cast<int>(rr_level[2] == 1));
994 if (n_ones > 1) { break; }
995 }
996 if (rr_level != mg_coarsen_ratio_v) {
997 ++numsclevs;
998 }
999
1000 accum_coarsen_ratio.push_back(accum_coarsen_ratio.back()*rr_level);
1001 domainboxes.push_back(dbx.coarsen(rr_level));
1002 boundboxes.push_back(bbx.coarsen(rr_level));
1003 bool to_agg = (bbx.d_numPts() / nbxs) < 0.999*threshold_npts;
1004 agg_flag.push_back(to_agg);
1005 }
1006
1007 for (int lev = 1, nlevs = static_cast<int>(domainboxes.size()); lev < nlevs; ++lev) {
1008 if (!agged && !agg_flag[lev] &&
1009 a_grids[0].coarsenable(accum_coarsen_ratio[lev], mg_box_min_width_v))
1010 {
1011 m_grids[0].push_back(amrex::coarsen(a_grids[0], accum_coarsen_ratio[lev]));
1012 m_dmap[0].push_back(a_dmap[0]);
1013 } else {
1014 IntVect cr = domainboxes[lev-1].length() / domainboxes[lev].length();
1015 if (!m_grids[0].back().coarsenable(cr)) {
1016 break; // average_down would fail if fine boxarray is not coarsenable.
1017 }
1018 m_grids[0].emplace_back(boundboxes[lev]);
1019 IntVect max_grid_size(info.agg_grid_size);
1020 if (info.do_semicoarsening && info.max_semicoarsening_level >= lev
1021 && info.semicoarsening_direction != -1)
1022 {
1023 IntVect blen = amrex::enclosedCells(boundboxes[lev]).size();
1024 AMREX_D_TERM(int mgs_0 = (max_grid_size[0]+blen[0]-1) / blen[0];,
1025 int mgs_1 = (max_grid_size[1]+blen[1]-1) / blen[1];,
1026 int mgs_2 = (max_grid_size[2]+blen[2]-1) / blen[2]);
1027 max_grid_size[info.semicoarsening_direction]
1028 *= AMREX_D_TERM(mgs_0, *mgs_1, *mgs_2);
1029 }
1030 m_grids[0].back().maxSize(max_grid_size);
1031 m_dmap[0].push_back(DistributionMapping());
1032 if (!agged) {
1033 agged = true;
1034 agg_lev = lev;
1035 }
1036 }
1037 m_geom[0].emplace_back(domainboxes[lev],rb,coord,is_per);
1038 }
1039 }
1040 else
1041 {
1042 Long consolidation_threshold = 0;
1043 Real avg_npts = 0.0;
1044 if (info.do_consolidation) {
1045 avg_npts = static_cast<Real>(a_grids[0].d_numPts()) / static_cast<Real>(ParallelContext::NProcsSub());
1046 consolidation_threshold = AMREX_D_TERM(Long(info.con_grid_size),
1047 *info.con_grid_size,
1048 *info.con_grid_size);
1049 }
1050
1051 Box const& dom0 = a_geom[0].Domain();
1052 IntVect rr_vec(1);
1053 int numsclevs = 0;
1054 for (int lev = 0; lev < info.max_coarsening_level; ++lev)
1055 {
1056 IntVect rr_level = mg_coarsen_ratio_v;
1057 bool do_semicoarsening_level = info.do_semicoarsening
1058 && numsclevs < info.max_semicoarsening_level;
1059 if (do_semicoarsening_level
1060 && info.semicoarsening_direction != -1)
1061 {
1062 rr_level[info.semicoarsening_direction] = 1;
1063 }
1064 IntVect is_coarsenable;
1065 for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
1066 IntVect rr_dir(1);
1067 rr_dir[idim] = rr_vec[idim] * rr_level[idim];
1068 is_coarsenable[idim] = dom0.coarsenable(rr_dir, mg_domain_min_width_v)
1069 && a_grids[0].coarsenable(rr_dir, mg_box_min_width_v);
1070 if (!is_coarsenable[idim] && do_semicoarsening_level
1071 && info.semicoarsening_direction == -1)
1072 {
1073 is_coarsenable[idim] = true;
1074 rr_level[idim] = 1;
1075 }
1076 }
1077 if (is_coarsenable != IntVect(1) || rr_level == IntVect(1)) {
1078 break;
1079 }
1080 if (do_semicoarsening_level && info.semicoarsening_direction == -1) {
1081 // make sure there is at most one direction that is not coarsened
1082 int n_ones = AMREX_D_TERM( static_cast<int>(rr_level[0] == 1),
1083 + static_cast<int>(rr_level[1] == 1),
1084 + static_cast<int>(rr_level[2] == 1));
1085 if (n_ones > 1) { break; }
1086 }
1087 if (rr_level != mg_coarsen_ratio_v) {
1088 ++numsclevs;
1089 }
1090 rr_vec *= rr_level;
1091
1092 m_geom[0].emplace_back(amrex::coarsen(dom0, rr_vec), rb, coord, is_per);
1093 m_grids[0].push_back(amrex::coarsen(a_grids[0], rr_vec));
1094
1095 if (info.do_consolidation)
1096 {
1097 if (avg_npts/static_cast<Real>(AMREX_D_TERM(rr_vec[0], *rr_vec[1], *rr_vec[2]))
1098 < Real(0.999)*static_cast<Real>(consolidation_threshold))
1099 {
1100 coned = true;
1101 con_lev = m_dmap[0].size();
1102 m_dmap[0].push_back(DistributionMapping());
1103 }
1104 else
1105 {
1106 m_dmap[0].push_back(m_dmap[0].back());
1107 }
1108 }
1109 else
1110 {
1111 m_dmap[0].push_back(a_dmap[0]);
1112 }
1113 }
1114 }
1115
1116 m_num_mg_levels[0] = m_grids[0].size();
1117
1118 for (int mglev = 0; mglev < m_num_mg_levels[0] - 1; mglev++){
1119 const Box& fine_domain = m_geom[0][mglev].Domain();
1120 const Box& crse_domain = m_geom[0][mglev+1].Domain();
1121 mg_coarsen_ratio_vec.push_back(fine_domain.length()/crse_domain.length());
1122 }
1123
1124 for (int amrlev = 0; amrlev < m_num_amr_levels; ++amrlev) {
1125 if (AMRRefRatio(amrlev) == 4 && mg_coarsen_ratio_vec.empty()) {
1126 mg_coarsen_ratio_vec.push_back(IntVect(2));
1127 }
1128 }
1129
1130 if (agged)
1131 {
1132 makeAgglomeratedDMap(m_grids[0], m_dmap[0]);
1133 }
1134 else if (coned)
1135 {
1136 makeConsolidatedDMap(m_grids[0], m_dmap[0], info.con_ratio, info.con_strategy);
1137 }
1138
1139 if (agged || coned)
1140 {
1141 m_bottom_comm = makeSubCommunicator(m_dmap[0].back());
1142 }
1143 else
1144 {
1145 m_bottom_comm = m_default_comm;
1146 }
1147
1148 m_do_agglomeration = agged;
1149 m_do_consolidation = coned;
1150
1151 if (verbose > 1) {
1152 if (agged) {
1153 Print() << "MLLinOp::defineGrids(): agglomerated AMR level 0 starting at MG level "
1154 << agg_lev << " of " << m_num_mg_levels[0] << "\n";
1155 } else if (coned) {
1156 Print() << "MLLinOp::defineGrids(): consolidated AMR level 0 starting at MG level "
1157 << con_lev << " of " << m_num_mg_levels[0]
1158 << " (ratio = " << info.con_ratio << ")" << "\n";
1159 } else {
1160 Print() << "MLLinOp::defineGrids(): no agglomeration or consolidation of AMR level 0\n";
1161 }
1162 }
1163
1164 for (int amrlev = 0; amrlev < m_num_amr_levels; ++amrlev)
1165 {
1166 for (int mglev = 1; mglev < m_num_mg_levels[amrlev]; ++mglev)
1167 {
1168 m_factory[amrlev].emplace_back(makeFactory(amrlev,mglev));
1169 }
1170 }
1171
1172 for (int amrlev = 1; amrlev < m_num_amr_levels; ++amrlev)
1173 {
1174 AMREX_ASSERT_WITH_MESSAGE(m_grids[amrlev][0].coarsenable(m_amr_ref_ratio[amrlev-1]),
1175 "MLLinOp: grids not coarsenable between AMR levels");
1176 }
1177}
1178
1179template <typename MF>
1180void
1182{
1183 m_needs_coarse_data_for_bc = !m_domain_covered[0];
1184
1185 levelbc_raii.resize(m_num_amr_levels);
1186 robin_a_raii.resize(m_num_amr_levels);
1187 robin_b_raii.resize(m_num_amr_levels);
1188 robin_f_raii.resize(m_num_amr_levels);
1189}
1190
1191template <typename MF>
1192void
1194 const Array<BCType,AMREX_SPACEDIM>& a_hibc) noexcept
1195{
1196 const int ncomp = getNComp();
1197 setDomainBC(Vector<Array<BCType,AMREX_SPACEDIM> >(ncomp,a_lobc),
1198 Vector<Array<BCType,AMREX_SPACEDIM> >(ncomp,a_hibc));
1199}
1200
1201template <typename MF>
1202void
1204 const Vector<Array<BCType,AMREX_SPACEDIM> >& a_hibc) noexcept
1205{
1206 const int ncomp = getNComp();
1207 AMREX_ASSERT_WITH_MESSAGE(ncomp == a_lobc.size() && ncomp == a_hibc.size(),
1208 "MLLinOp::setDomainBC: wrong size");
1209 m_lobc = a_lobc;
1210 m_hibc = a_hibc;
1211 m_lobc_orig = m_lobc;
1212 m_hibc_orig = m_hibc;
1213 for (int icomp = 0; icomp < ncomp; ++icomp) {
1214 for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
1215 if (m_geom[0][0].isPeriodic(idim)) {
1216 AMREX_ALWAYS_ASSERT(m_lobc[icomp][idim] == BCType::Periodic &&
1217 m_hibc[icomp][idim] == BCType::Periodic);
1218 } else {
1219 AMREX_ALWAYS_ASSERT(m_lobc[icomp][idim] != BCType::Periodic &&
1220 m_hibc[icomp][idim] != BCType::Periodic);
1221 }
1222
1223 if (m_lobc[icomp][idim] == LinOpBCType::inhomogNeumann ||
1224 m_lobc[icomp][idim] == LinOpBCType::Robin)
1225 {
1226 m_lobc[icomp][idim] = LinOpBCType::Neumann;
1227 }
1228
1229 if (m_hibc[icomp][idim] == LinOpBCType::inhomogNeumann ||
1230 m_hibc[icomp][idim] == LinOpBCType::Robin)
1231 {
1232 m_hibc[icomp][idim] = LinOpBCType::Neumann;
1233 }
1234 }
1235 }
1236
1237 if (hasHiddenDimension()) {
1238 const int hd = hiddenDirection();
1239 for (int n = 0; n < ncomp; ++n) {
1240 m_lobc[n][hd] = LinOpBCType::Neumann;
1241 m_hibc[n][hd] = LinOpBCType::Neumann;
1242 }
1243 }
1244
1245 if (hasInhomogNeumannBC() && !supportInhomogNeumannBC()) {
1246 amrex::Abort("Inhomogeneous Neumann BC not supported");
1247 }
1248 if (hasRobinBC() && !supportRobinBC()) {
1249 amrex::Abort("Robin BC not supported");
1250 }
1251}
1252
1253template <typename MF>
1254bool
1255MLLinOpT<MF>::hasBC (BCType bct) const noexcept
1256{
1257 int ncomp = m_lobc_orig.size();
1258 for (int n = 0; n < ncomp; ++n) {
1259 for (int idim = 0; idim <AMREX_SPACEDIM; ++idim) {
1260 if (m_lobc_orig[n][idim] == bct || m_hibc_orig[n][idim] == bct) {
1261 return true;
1262 }
1263 }
1264 }
1265 return false;
1266}
1267
1268template <typename MF>
1269bool
1271{
1272 return hasBC(BCType::inhomogNeumann);
1273}
1274
1275template <typename MF>
1276bool
1278{
1279 return hasBC(BCType::Robin);
1280}
1281
1282template <typename MF>
1283Box
1284MLLinOpT<MF>::compactify (Box const& b) const noexcept
1285{
1286#if (AMREX_SPACEDIM == 3)
1287 if (info.hasHiddenDimension()) {
1288 const auto& lo = b.smallEnd();
1289 const auto& hi = b.bigEnd();
1290 if (info.hidden_direction == 0) {
1291 return Box(IntVect(lo[1],lo[2],0), IntVect(hi[1],hi[2],0), b.ixType());
1292 } else if (info.hidden_direction == 1) {
1293 return Box(IntVect(lo[0],lo[2],0), IntVect(hi[0],hi[2],0), b.ixType());
1294 } else {
1295 return Box(IntVect(lo[0],lo[1],0), IntVect(hi[0],hi[1],0), b.ixType());
1296 }
1297 } else
1298#endif
1299 {
1300 return b;
1301 }
1302}
1303
1304template <typename MF>
1305void
1308{
1309 BL_PROFILE("MLLinOp::makeAgglomeratedDMap");
1310
1311 BL_ASSERT(!dm[0].empty());
1312 for (int i = 1, N=static_cast<int>(ba.size()); i < N; ++i)
1313 {
1314 if (dm[i].empty())
1315 {
1316 const std::vector< std::vector<int> >& sfc = DistributionMapping::makeSFC(ba[i]);
1317
1318 const int nprocs = ParallelContext::NProcsSub();
1319 AMREX_ASSERT(static_cast<int>(sfc.size()) == nprocs);
1320
1321 Vector<int> pmap(ba[i].size());
1322 for (int iproc = 0; iproc < nprocs; ++iproc) {
1323 int grank = ParallelContext::local_to_global_rank(iproc);
1324 for (int ibox : sfc[iproc]) {
1325 pmap[ibox] = grank;
1326 }
1327 }
1328 dm[i].define(std::move(pmap));
1329 }
1330 }
1331}
1332
1333template <typename MF>
1334void
1337 int ratio, int strategy)
1338{
1339 BL_PROFILE("MLLinOp::makeConsolidatedDMap()");
1340
1341 int factor = 1;
1342 BL_ASSERT(!dm[0].empty());
1343 for (int i = 1, N=static_cast<int>(ba.size()); i < N; ++i)
1344 {
1345 if (dm[i].empty())
1346 {
1347 factor *= ratio;
1348
1349 const int nprocs = ParallelContext::NProcsSub();
1350 const auto& pmap_fine = dm[i-1].ProcessorMap();
1351 Vector<int> pmap(pmap_fine.size());
1352 ParallelContext::global_to_local_rank(pmap.data(), pmap_fine.data(), static_cast<int>(pmap.size()));
1353 if (strategy == 1) {
1354 for (auto& x: pmap) {
1355 x /= ratio;
1356 }
1357 } else if (strategy == 2) {
1358 int nprocs_con = static_cast<int>(std::ceil(static_cast<Real>(nprocs)
1359 / static_cast<Real>(factor)));
1360 for (auto& x: pmap) {
1361 auto d = std::div(x,nprocs_con);
1362 x = d.rem;
1363 }
1364 } else if (strategy == 3) {
1365 if (factor == ratio) {
1366 const std::vector< std::vector<int> >& sfc = DistributionMapping::makeSFC(ba[i]);
1367 for (int iproc = 0; iproc < nprocs; ++iproc) {
1368 for (int ibox : sfc[iproc]) {
1369 pmap[ibox] = iproc;
1370 }
1371 }
1372 }
1373 for (auto& x: pmap) {
1374 x /= ratio;
1375 }
1376 }
1377
1379 dm[i].define(std::move(pmap));
1380 } else {
1381 Vector<int> pmap_g(pmap.size());
1382 ParallelContext::local_to_global_rank(pmap_g.data(), pmap.data(), static_cast<int>(pmap.size()));
1383 dm[i].define(std::move(pmap_g));
1384 }
1385 }
1386 }
1387}
1388
1389template <typename MF>
1392{
1393 BL_PROFILE("MLLinOp::makeSubCommunicator()");
1394
1395#ifdef BL_USE_MPI
1396
1397 Vector<int> newgrp_ranks = dm.ProcessorMap();
1398 std::sort(newgrp_ranks.begin(), newgrp_ranks.end());
1399 auto last = std::unique(newgrp_ranks.begin(), newgrp_ranks.end());
1400 newgrp_ranks.erase(last, newgrp_ranks.end());
1401
1402 MPI_Comm newcomm;
1403 MPI_Group defgrp, newgrp;
1404 MPI_Comm_group(m_default_comm, &defgrp);
1406 MPI_Group_incl(defgrp, static_cast<int>(newgrp_ranks.size()), newgrp_ranks.data(), &newgrp);
1407 } else {
1408 Vector<int> local_newgrp_ranks(newgrp_ranks.size());
1409 ParallelContext::global_to_local_rank(local_newgrp_ranks.data(),
1410 newgrp_ranks.data(), static_cast<int>(newgrp_ranks.size()));
1411 MPI_Group_incl(defgrp, static_cast<int>(local_newgrp_ranks.size()), local_newgrp_ranks.data(), &newgrp);
1412 }
1413
1414 MPI_Comm_create(m_default_comm, newgrp, &newcomm);
1415
1416 m_raii_comm = std::make_unique<CommContainer>(newcomm);
1417
1418 MPI_Group_free(&defgrp);
1419 MPI_Group_free(&newgrp);
1420
1421 return newcomm;
1422#else
1424 return m_default_comm;
1425#endif
1426}
1427
1428template <typename MF>
1429void
1431 const Array<Real,AMREX_SPACEDIM>& hi_bcloc) noexcept
1432{
1433 m_domain_bloc_lo = lo_bcloc;
1434 m_domain_bloc_hi = hi_bcloc;
1435}
1436
1437template <typename MF>
1438void
1439MLLinOpT<MF>::setCoarseFineBC (const MF* crse, int crse_ratio,
1440 LinOpBCType bc_type) noexcept
1441{
1442 setCoarseFineBC(crse, IntVect(crse_ratio), bc_type);
1443}
1444
1445template <typename MF>
1446void
1447MLLinOpT<MF>::setCoarseFineBC (const MF* crse, IntVect const& crse_ratio,
1448 LinOpBCType bc_type) noexcept
1449{
1450 m_coarse_data_for_bc = crse;
1451 m_coarse_data_crse_ratio = crse_ratio;
1452 m_coarse_fine_bc_type = bc_type;
1453}
1454
1455template <typename MF>
1456template <typename AMF, std::enable_if_t<!std::is_same_v<MF,AMF>,int>>
1457void
1458MLLinOpT<MF>::setCoarseFineBC (const AMF* crse, int crse_ratio,
1459 LinOpBCType bc_type) noexcept
1460{
1461 setCoarseFineBC(crse, IntVect(crse_ratio), bc_type);
1462}
1463
1464template <typename MF>
1465template <typename AMF, std::enable_if_t<!std::is_same_v<MF,AMF>,int>>
1466void
1467MLLinOpT<MF>::setCoarseFineBC (const AMF* crse, IntVect const& crse_ratio,
1468 LinOpBCType bc_type) noexcept
1469{
1470 m_coarse_data_for_bc_raii = MF(crse->boxArray(), crse->DistributionMap(),
1471 crse->nComp(), crse->nGrowVect());
1472 m_coarse_data_for_bc_raii.LocalCopy(*crse, 0, 0, crse->nComp(),
1473 crse->nGrowVect());
1474 m_coarse_data_for_bc = &m_coarse_data_for_bc_raii;
1475 m_coarse_data_crse_ratio = crse_ratio;
1476 m_coarse_fine_bc_type = bc_type;
1477}
1478
1479template <typename MF>
1480void
1482{
1483 mf.clear();
1484 mf.resize(m_num_amr_levels);
1485 for (int alev = 0; alev < m_num_amr_levels; ++alev) {
1486 mf[alev].resize(m_num_mg_levels[alev]);
1487 for (int mlev = 0; mlev < m_num_mg_levels[alev]; ++mlev) {
1488 mf[alev][mlev] = make(alev, mlev, ng);
1489 }
1490 }
1491}
1492
1493template <typename MF>
1494MF
1495MLLinOpT<MF>::make (int amrlev, int mglev, IntVect const& ng) const
1496{
1497 if constexpr (IsMultiFabLike_v<MF>) {
1498 return MF(amrex::convert(m_grids[amrlev][mglev], m_ixtype),
1499 m_dmap[amrlev][mglev], getNComp(), ng, MFInfo(),
1500 *m_factory[amrlev][mglev]);
1501 } else {
1502 amrex::ignore_unused(amrlev, mglev, ng);
1503 amrex::Abort("MLLinOpT::make: how did we get here?");
1504 return {};
1505 }
1506}
1507
1508template <typename MF>
1509MF
1510MLLinOpT<MF>::makeAlias (MF const& mf) const
1511{
1512 if constexpr (IsMultiFabLike_v<MF>) {
1513 return MF(mf, amrex::make_alias, 0, mf.nComp());
1514 } else {
1516 amrex::Abort("MLLinOpT::makeAlias: how did we get here?");
1517 return {};
1518 }
1519}
1520
1521template <typename MF>
1522MF
1523MLLinOpT<MF>::makeCoarseMG (int amrlev, int mglev, IntVect const& ng) const
1524{
1525 if constexpr (IsMultiFabLike_v<MF>) {
1526 BoxArray cba = m_grids[amrlev][mglev];
1527 IntVect ratio = (amrlev > 0) ? IntVect(2) : mg_coarsen_ratio_vec[mglev];
1528 cba.coarsen(ratio);
1529 cba.convert(m_ixtype);
1530 return MF(cba, m_dmap[amrlev][mglev], getNComp(), ng);
1531 } else {
1532 amrex::ignore_unused(amrlev, mglev, ng);
1533 amrex::Abort("MLLinOpT::makeCoarseMG: how did we get here?");
1534 return {};
1535 }
1536}
1537
1538template <typename MF>
1539MF
1540MLLinOpT<MF>::makeCoarseAmr (int famrlev, IntVect const& ng) const
1541{
1542 if constexpr (IsMultiFabLike_v<MF>) {
1543 BoxArray cba = m_grids[famrlev][0];
1544 IntVect ratio(AMRRefRatio(famrlev-1));
1545 cba.coarsen(ratio);
1546 cba.convert(m_ixtype);
1547 return MF(cba, m_dmap[famrlev][0], getNComp(), ng);
1548 } else {
1549 amrex::ignore_unused(famrlev, ng);
1550 amrex::Abort("MLLinOpT::makeCoarseAmr: how did we get here?");
1551 return {};
1552 }
1553}
1554
1555template <typename MF>
1556void
1558{
1559 if (new_size <= 0 || new_size >= m_num_mg_levels[0]) { return; }
1560
1561 m_num_mg_levels[0] = new_size;
1562
1563 m_geom[0].resize(new_size);
1564 m_grids[0].resize(new_size);
1565 m_dmap[0].resize(new_size);
1566 m_factory[0].resize(new_size);
1567
1568 if (m_bottom_comm != m_default_comm) {
1569 m_bottom_comm = makeSubCommunicator(m_dmap[0].back());
1570 }
1571}
1572
1573template <typename MF>
1574void
1575MLLinOpT<MF>::avgDownResMG (int clev, MF& cres, MF const& fres) const
1576{
1577 amrex::ignore_unused(clev, cres, fres);
1578 if constexpr (amrex::IsFabArray<MF>::value) {
1579 const int ncomp = this->getNComp();
1580#ifdef AMREX_USE_EB
1581 if (!fres.isAllRegular()) {
1582 if constexpr (std::is_same<MF,MultiFab>()) {
1583 amrex::EB_average_down(fres, cres, 0, ncomp,
1584 mg_coarsen_ratio_vec[clev-1]);
1585 } else {
1586 amrex::Abort("EB_average_down only works with MultiFab");
1587 }
1588 } else
1589#endif
1590 {
1591 amrex::average_down(fres, cres, 0, ncomp, mg_coarsen_ratio_vec[clev-1]);
1592 }
1593 } else {
1594 amrex::Abort("For non-FabArray, MLLinOpT<MF>::avgDownResMG should be overridden.");
1595 }
1596}
1597
1598template <typename MF>
1599bool
1600MLLinOpT<MF>::isMFIterSafe (int amrlev, int mglev1, int mglev2) const
1601{
1602 return m_dmap[amrlev][mglev1] == m_dmap[amrlev][mglev2]
1603 && BoxArray::SameRefs(m_grids[amrlev][mglev1], m_grids[amrlev][mglev2]);
1604}
1605
1606template <typename MF>
1607template <typename AMF, std::enable_if_t<!std::is_same_v<MF,AMF>,int>>
1608void
1609MLLinOpT<MF>::setLevelBC (int amrlev, const AMF* levelbcdata,
1610 const AMF* robinbc_a, const AMF* robinbc_b,
1611 const AMF* robinbc_f)
1612{
1613 const int ncomp = this->getNComp();
1614 if (levelbcdata) {
1615 levelbc_raii[amrlev] = std::make_unique<MF>(levelbcdata->boxArray(),
1616 levelbcdata->DistributionMap(),
1617 ncomp, levelbcdata->nGrowVect());
1618 levelbc_raii[amrlev]->LocalCopy(*levelbcdata, 0, 0, ncomp,
1619 levelbcdata->nGrowVect());
1620 } else {
1621 levelbc_raii[amrlev].reset();
1622 }
1623
1624 if (robinbc_a) {
1625 robin_a_raii[amrlev] = std::make_unique<MF>(robinbc_a->boxArray(),
1626 robinbc_a->DistributionMap(),
1627 ncomp, robinbc_a->nGrowVect());
1628 robin_a_raii[amrlev]->LocalCopy(*robinbc_a, 0, 0, ncomp,
1629 robinbc_a->nGrowVect());
1630 } else {
1631 robin_a_raii[amrlev].reset();
1632 }
1633
1634 if (robinbc_b) {
1635 robin_b_raii[amrlev] = std::make_unique<MF>(robinbc_b->boxArray(),
1636 robinbc_b->DistributionMap(),
1637 ncomp, robinbc_b->nGrowVect());
1638 robin_b_raii[amrlev]->LocalCopy(*robinbc_b, 0, 0, ncomp,
1639 robinbc_b->nGrowVect());
1640 } else {
1641 robin_b_raii[amrlev].reset();
1642 }
1643
1644 if (robinbc_f) {
1645 robin_f_raii[amrlev] = std::make_unique<MF>(robinbc_f->boxArray(),
1646 robinbc_f->DistributionMap(),
1647 ncomp, robinbc_f->nGrowVect());
1648 robin_f_raii[amrlev]->LocalCopy(*robinbc_f, 0, 0, ncomp,
1649 robinbc_f->nGrowVect());
1650 } else {
1651 robin_f_raii[amrlev].reset();
1652 }
1653
1654 this->setLevelBC(amrlev, levelbc_raii[amrlev].get(), robin_a_raii[amrlev].get(),
1655 robin_b_raii[amrlev].get(), robin_f_raii[amrlev].get());
1656}
1657
1658template <typename MF>
1659auto
1661{
1662 AMREX_ALWAYS_ASSERT(NAMRLevels() == 1);
1663 return xdoty(0,0,*x[0],*y[0],false);
1664}
1665
1666template <typename MF>
1667auto
1669{
1670 AMREX_ALWAYS_ASSERT(NAMRLevels() == 1);
1671 auto r = xdoty(0,0,*x[0],*x[0],false);
1672 return std::sqrt(r);
1673}
1674
1675extern template class MLLinOpT<MultiFab>;
1676
1678
1679}
1680
1681#endif
#define BL_PROFILE(a)
Definition AMReX_BLProfiler.H:551
#define BL_ASSERT(EX)
Definition AMReX_BLassert.H:39
#define AMREX_ASSERT_WITH_MESSAGE(EX, MSG)
Definition AMReX_BLassert.H:37
#define AMREX_ASSERT(EX)
Definition AMReX_BLassert.H:38
#define AMREX_ALWAYS_ASSERT(EX)
Definition AMReX_BLassert.H:50
Array4< Real > fine
Definition AMReX_InterpFaceRegister.cpp:90
Array4< Real const > crse
Definition AMReX_InterpFaceRegister.cpp:92
#define AMREX_D_TERM(a, b, c)
Definition AMReX_SPACE.H:129
#define AMREX_D_PICK(a, b, c)
Definition AMReX_SPACE.H:151
int MPI_Comm
Definition AMReX_ccse-mpi.H:47
int MPI_Group
Definition AMReX_ccse-mpi.H:48
static constexpr int MPI_COMM_NULL
Definition AMReX_ccse-mpi.H:55
A collection of Boxes stored in an Array.
Definition AMReX_BoxArray.H:550
static bool SameRefs(const BoxArray &lhs, const BoxArray &rhs)
whether two BoxArrays share the same data
Definition AMReX_BoxArray.H:823
BoxArray & coarsen(int refinement_ratio)
Coarsen each Box in the BoxArray to the specified ratio.
BoxArray & convert(IndexType typ)
Apply Box::convert(IndexType) to each Box in the BoxArray.
AMREX_GPU_HOST_DEVICE BoxND & coarsen(int ref_ratio) noexcept
Coarsen BoxND by given (positive) refinement ratio. NOTE: if type(dir) = CELL centered: lo <- lo/rati...
Definition AMReX_Box.H:708
AMREX_GPU_HOST_DEVICE BoxND & makeSlab(int direction, int slab_index) noexcept
Definition AMReX_Box.H:779
AMREX_GPU_HOST_DEVICE double d_numPts() const noexcept
Returns the number of points contained in the BoxND. This is intended for use only in diagnostic mess...
Definition AMReX_Box.H:366
AMREX_GPU_HOST_DEVICE IntVectND< dim > length() const noexcept
Return the length of the BoxND.
Definition AMReX_Box.H:146
AMREX_GPU_HOST_DEVICE bool coarsenable(const IntVectND< dim > &refrat, const IntVectND< dim > &min_width) const noexcept
Definition AMReX_Box.H:745
AMREX_GPU_HOST_DEVICE const IntVectND< dim > & smallEnd() const &noexcept
Get the smallend of the BoxND.
Definition AMReX_Box.H:105
AMREX_GPU_HOST_DEVICE Long numPts() const noexcept
Returns the number of points contained in the BoxND.
Definition AMReX_Box.H:346
Definition AMReX_FabFactory.H:76
Calculates the distribution of FABs to MPI processes.
Definition AMReX_DistributionMapping.H:41
static DistributionMapping makeSFC(const MultiFab &weight, bool sort=true)
Definition AMReX_DistributionMapping.cpp:1764
const Vector< int > & ProcessorMap() const noexcept
Returns a constant reference to the mapping of boxes in the underlying BoxArray to the CPU that holds...
Definition AMReX_DistributionMapping.cpp:47
Definition AMReX_EBFabFactory.H:24
Definition AMReX_FabFactory.H:50
Solve using GMRES with multigrid as preconditioner.
Definition AMReX_GMRES_MLMG.H:21
Rectangular problem domain geometry.
Definition AMReX_Geometry.H:73
Interface
Definition AMReX_Hypre.H:21
AMREX_GPU_HOST_DEVICE static AMREX_FORCE_INLINE constexpr std::size_t size() noexcept
Definition AMReX_IntVect.H:723
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE IntVectND< new_dim > resize(int fill_extra=0) const noexcept
Returns a new IntVectND of size new_dim by either shrinking or expanding this IntVectND.
Definition AMReX_IntVect.H:766
Definition AMReX_MLABecLaplacian.H:15
Definition AMReX_MLCGSolver.H:12
Definition AMReX_MLLinOp.H:98
const MF * m_coarse_data_for_bc
Definition AMReX_MLLinOp.H:638
void setDomainBC(const Array< BCType, AMREX_SPACEDIM > &lobc, const Array< BCType, AMREX_SPACEDIM > &hibc) noexcept
Boundary of the whole domain.
Definition AMReX_MLLinOp.H:1193
Vector< Vector< std::unique_ptr< FabFactory< FAB > > > > m_factory
Definition AMReX_MLLinOp.H:611
virtual void avgDownResMG(int clev, MF &cres, MF const &fres) const
Definition AMReX_MLLinOp.H:1575
int NAMRLevels() const noexcept
Return the number of AMR levels.
Definition AMReX_MLLinOp.H:564
bool m_do_consolidation
Definition AMReX_MLLinOp.H:602
virtual void compGrad(int, const Array< MF *, AMREX_SPACEDIM > &, MF &, Location) const
Compute gradients of the solution.
Definition AMReX_MLLinOp.H:438
bool isCellCentered() const noexcept
Definition AMReX_MLLinOp.H:685
IntVect m_ixtype
Definition AMReX_MLLinOp.H:599
void setVerbose(int v) noexcept
Set verbosity.
Definition AMReX_MLLinOp.H:244
Array< Real, AMREX_SPACEDIM > m_domain_bloc_hi
Definition AMReX_MLLinOp.H:632
bool isMFIterSafe(int amrlev, int mglev1, int mglev2) const
Definition AMReX_MLLinOp.H:1600
RealVect m_coarse_bc_loc
Definition AMReX_MLLinOp.H:637
virtual bool needsUpdate() const
Does it need update if it's reused?
Definition AMReX_MLLinOp.H:266
virtual void interpolation(int amrlev, int fmglev, MF &fine, const MF &crse) const =0
Add interpolated coarse MG level data to fine MG level data.
virtual void setLevelBC(int, const MF *, const MF *=nullptr, const MF *=nullptr, const MF *=nullptr)=0
Set boundary conditions for given level. For cell-centered solves only.
virtual MF make(int amrlev, int mglev, IntVect const &ng) const
Definition AMReX_MLLinOp.H:1495
FabFactory< FAB > const * Factory(int amr_lev, int mglev=0) const noexcept
Definition AMReX_MLLinOp.H:649
T get_d0(T const &dx, T const &dy, T const &) const noexcept
Definition AMReX_MLLinOp.H:726
MPI_Comm BottomCommunicator() const noexcept
Definition AMReX_MLLinOp.H:676
void setEnforceSingularSolvable(bool o) noexcept
Definition AMReX_MLLinOp.H:253
MPI_Comm Communicator() const noexcept
Definition AMReX_MLLinOp.H:677
virtual void getFluxes(const Vector< Array< MF *, AMREX_SPACEDIM > > &, const Vector< MF * > &, Location) const
Definition AMReX_MLLinOp.H:501
int mg_domain_min_width
Definition AMReX_MLLinOp.H:583
void setMaxOrder(int o) noexcept
Set order of interpolation at coarse/fine boundary.
Definition AMReX_MLLinOp.H:247
Vector< Array< BCType, AMREX_SPACEDIM > > m_hibc_orig
Definition AMReX_MLLinOp.H:577
virtual void interpAssign(int amrlev, int fmglev, MF &fine, MF &crse) const
Overwrite fine MG level data with interpolated coarse data.
Definition AMReX_MLLinOp.H:299
virtual std::string name() const
Definition AMReX_MLLinOp.H:131
void setCoarseFineBC(const AMF *crse, IntVect const &crse_ratio, LinOpBCType bc_type=LinOpBCType::Dirichlet) noexcept
Definition AMReX_MLLinOp.H:1467
bool doAgglomeration() const noexcept
Definition AMReX_MLLinOp.H:681
Vector< std::unique_ptr< MF > > levelbc_raii
Definition AMReX_MLLinOp.H:761
MF m_coarse_data_for_bc_raii
Definition AMReX_MLLinOp.H:639
virtual void setDirichletNodesToZero(int, int, MF &) const
Definition AMReX_MLLinOp.H:477
MLLinOpT< MF > & operator=(const MLLinOpT< MF > &)=delete
std::unique_ptr< CommContainer > m_raii_comm
Definition AMReX_MLLinOp.H:629
bool m_do_semicoarsening
Definition AMReX_MLLinOp.H:604
bool hasRobinBC() const noexcept
Definition AMReX_MLLinOp.H:1277
Array< Real, AMREX_SPACEDIM > m_domain_bloc_lo
Definition AMReX_MLLinOp.H:631
virtual void resizeMultiGrid(int new_size)
Definition AMReX_MLLinOp.H:1557
Vector< Vector< BoxArray > > m_grids
Definition AMReX_MLLinOp.H:609
virtual MF makeCoarseAmr(int famrlev, IntVect const &ng) const
Definition AMReX_MLLinOp.H:1540
Vector< std::unique_ptr< MF > > robin_f_raii
Definition AMReX_MLLinOp.H:764
bool m_do_agglomeration
Definition AMReX_MLLinOp.H:601
void setCoarseFineBC(const AMF *crse, int crse_ratio, LinOpBCType bc_type=LinOpBCType::Dirichlet) noexcept
Definition AMReX_MLLinOp.H:1458
virtual MF makeAlias(MF const &mf) const
Definition AMReX_MLLinOp.H:1510
void setDomainBC(const Vector< Array< BCType, AMREX_SPACEDIM > > &lobc, const Vector< Array< BCType, AMREX_SPACEDIM > > &hibc) noexcept
Boundary of the whole domain.
Definition AMReX_MLLinOp.H:1203
Array4< T > compactify(Array4< T > const &a) const noexcept
Definition AMReX_MLLinOp.H:712
static constexpr int mg_coarsen_ratio
Definition AMReX_MLLinOp.H:581
virtual void copyNSolveSolution(MF &, MF const &) const
Definition AMReX_MLLinOp.H:541
virtual void solutionResidual(int amrlev, MF &resid, MF &x, const MF &b, const MF *crse_bcdata=nullptr)=0
Compute residual for solution.
int getMaxOrder() const noexcept
Get order of interpolation at coarse/fine boundary.
Definition AMReX_MLLinOp.H:249
virtual int getNComp() const
Return number of components.
Definition AMReX_MLLinOp.H:261
virtual void getFluxes(const Vector< MF * > &, const Vector< MF * > &) const
Definition AMReX_MLLinOp.H:506
void defineBC()
Definition AMReX_MLLinOp.H:1181
void setCoarseFineBCLocation(const RealVect &cloc) noexcept
Definition AMReX_MLLinOp.H:679
Vector< int > m_amr_ref_ratio
Definition AMReX_MLLinOp.H:594
MPI_Comm m_default_comm
Definition AMReX_MLLinOp.H:614
static void makeAgglomeratedDMap(const Vector< BoxArray > &ba, Vector< DistributionMapping > &dm)
Definition AMReX_MLLinOp.H:1306
bool isBottomActive() const noexcept
Definition AMReX_MLLinOp.H:674
virtual Vector< RT > getSolvabilityOffset(int, int, MF const &) const
get offset for fixing solvability
Definition AMReX_MLLinOp.H:464
void defineGrids(const Vector< Geometry > &a_geom, const Vector< BoxArray > &a_grids, const Vector< DistributionMapping > &a_dmap, const Vector< FabFactory< FAB > const * > &a_factory)
Definition AMReX_MLLinOp.H:807
virtual BottomSolver getDefaultBottomSolver() const
Definition AMReX_MLLinOp.H:258
typename FabDataType< MF >::fab_type FAB
Definition AMReX_MLLinOp.H:108
virtual RT normInf(int amrlev, MF const &mf, bool local) const =0
Vector< int > m_num_mg_levels
Definition AMReX_MLLinOp.H:596
bool hasBC(BCType bct) const noexcept
Definition AMReX_MLLinOp.H:1255
static void makeConsolidatedDMap(const Vector< BoxArray > &ba, Vector< DistributionMapping > &dm, int ratio, int strategy)
Definition AMReX_MLLinOp.H:1335
Vector< Vector< DistributionMapping > > m_dmap
Definition AMReX_MLLinOp.H:610
int verbose
Definition AMReX_MLLinOp.H:587
virtual void checkPoint(std::string const &) const
Definition AMReX_MLLinOp.H:757
IntVect m_coarse_data_crse_ratio
Definition AMReX_MLLinOp.H:636
LinOpBCType BCType
Definition AMReX_MLLinOp.H:111
virtual void correctionResidual(int amrlev, int mglev, MF &resid, MF &x, const MF &b, BCMode bc_mode, const MF *crse_bcdata=nullptr)=0
Compute residual for the residual-correction form, resid = b - L(x)
virtual void compFlux(int, const Array< MF *, AMREX_SPACEDIM > &, MF &, Location) const
Compute fluxes.
Definition AMReX_MLLinOp.H:424
const Vector< int > & AMRRefRatio() const noexcept
Return AMR refinement ratios.
Definition AMReX_MLLinOp.H:644
MLLinOpT(MLLinOpT< MF > &&)=delete
Vector< Array< BCType, AMREX_SPACEDIM > > m_lobc_orig
Definition AMReX_MLLinOp.H:576
void setCoarseFineBC(const MF *crse, int crse_ratio, LinOpBCType bc_type=LinOpBCType::Dirichlet) noexcept
Set coarse/fine boundary conditions. For cell-centered solves only.
Definition AMReX_MLLinOp.H:1439
virtual void apply(int amrlev, int mglev, MF &out, MF &in, BCMode bc_mode, StateMode s_mode, const MLMGBndryT< MF > *bndry=nullptr) const =0
Apply the linear operator, out = L(in)
GpuArray< BCType, AMREX_SPACEDIM > HiBC(int icomp=0) const noexcept
Definition AMReX_MLLinOp.H:658
void setDomainBCLoc(const Array< Real, AMREX_SPACEDIM > &lo_bcloc, const Array< Real, AMREX_SPACEDIM > &hi_bcloc) noexcept
Set location of domain boundaries.
Definition AMReX_MLLinOp.H:1430
bool needsCoarseDataForBC() const noexcept
Needs coarse data for bc?
Definition AMReX_MLLinOp.H:177
typename FabDataType< MF >::value_type RT
Definition AMReX_MLLinOp.H:109
virtual void update()
Update for reuse.
Definition AMReX_MLLinOp.H:268
bool m_precond_mode
Definition AMReX_MLLinOp.H:641
virtual std::unique_ptr< FabFactory< FAB > > makeFactory(int, int) const
Definition AMReX_MLLinOp.H:701
virtual void applyMetricTerm(int, int, MF &) const
apply metric terms if there are any
Definition AMReX_MLLinOp.H:445
virtual void unapplyMetricTerm(int, int, MF &) const
unapply metric terms if there are any
Definition AMReX_MLLinOp.H:447
bool hasHiddenDimension() const noexcept
Definition AMReX_MLLinOp.H:707
virtual bool isBottomSingular() const =0
Is the bottom of MG singular?
virtual void reflux(int crse_amrlev, MF &res, const MF &crse_sol, const MF &crse_rhs, MF &fine_res, MF &fine_sol, const MF &fine_rhs) const
Reflux at AMR coarse/fine boundary.
Definition AMReX_MLLinOp.H:407
virtual IntVect getNGrowVectRestriction() const
Definition AMReX_MLLinOp.H:687
Vector< std::unique_ptr< MF > > robin_b_raii
Definition AMReX_MLLinOp.H:763
static constexpr int mg_box_min_width
Definition AMReX_MLLinOp.H:582
virtual RT dotProductPrecond(Vector< MF const * > const &x, Vector< MF const * > const &y) const
Definition AMReX_MLLinOp.H:1660
virtual MF makeCoarseMG(int amrlev, int mglev, IntVect const &ng) const
Definition AMReX_MLLinOp.H:1523
virtual void fixSolvabilityByOffset(int, int, MF &, Vector< RT > const &) const
fix solvability by subtracting offset from RHS
Definition AMReX_MLLinOp.H:468
const Geometry & Geom(int amr_lev, int mglev=0) const noexcept
Definition AMReX_MLLinOp.H:569
virtual void endPrecondBC()
Definition AMReX_MLLinOp.H:559
Vector< Array< BCType, AMREX_SPACEDIM > > m_lobc
Definition AMReX_MLLinOp.H:572
int hiddenDirection() const noexcept
Definition AMReX_MLLinOp.H:708
Vector< int > m_domain_covered
Definition AMReX_MLLinOp.H:612
const MLLinOpT< MF > * m_parent
Definition AMReX_MLLinOp.H:597
bool doSemicoarsening() const noexcept
Definition AMReX_MLLinOp.H:683
virtual bool supportNSolve() const
Definition AMReX_MLLinOp.H:539
virtual bool supportRobinBC() const noexcept
Definition AMReX_MLLinOp.H:668
virtual void normalize(int amrlev, int mglev, MF &mf) const
Divide mf by the diagonal component of the operator. Used by bicgstab.
Definition AMReX_MLLinOp.H:364
virtual void applyInhomogNeumannTerm(int, MF &) const
Extra terms introduced when we treat inhomogeneous Nuemann BC as homogeneous.
Definition AMReX_MLLinOp.H:453
virtual void avgDownResAmr(int clev, MF &cres, MF const &fres) const
Definition AMReX_MLLinOp.H:549
Vector< Vector< Geometry > > m_geom
first Vector is for amr level and second is mg level
Definition AMReX_MLLinOp.H:608
virtual RT norm2Precond(Vector< MF const * > const &x) const
Definition AMReX_MLLinOp.H:1668
MLLinOpT(const MLLinOpT< MF > &)=delete
virtual bool scaleRHS(int, MF *) const
scale RHS to fix solvability
Definition AMReX_MLLinOp.H:459
virtual void averageDownAndSync(Vector< MF > &sol) const =0
void setCoarseFineBC(const MF *crse, IntVect const &crse_ratio, LinOpBCType bc_type=LinOpBCType::Dirichlet) noexcept
Definition AMReX_MLLinOp.H:1447
GpuArray< BCType, AMREX_SPACEDIM > LoBC(int icomp=0) const noexcept
Definition AMReX_MLLinOp.H:653
MLLinOpT()=default
Box compactify(Box const &b) const noexcept
Definition AMReX_MLLinOp.H:1284
bool m_needs_coarse_data_for_bc
Definition AMReX_MLLinOp.H:634
int maxorder
Definition AMReX_MLLinOp.H:589
void define(const Vector< Geometry > &a_geom, const Vector< BoxArray > &a_grids, const Vector< DistributionMapping > &a_dmap, const LPInfo &a_info, const Vector< FabFactory< FAB > const * > &a_factory, bool eb_limit_coarsening=true)
Definition AMReX_MLLinOp.H:769
Vector< IntVect > mg_coarsen_ratio_vec
Definition AMReX_MLLinOp.H:605
MF MFType
Definition AMReX_MLLinOp.H:107
virtual void preparePrecond()
Definition AMReX_MLLinOp.H:473
virtual ~MLLinOpT()=default
virtual void averageDownSolutionRHS(int camrlev, MF &crse_sol, MF &crse_rhs, const MF &fine_sol, const MF &fine_rhs)
Average-down data from fine AMR level to coarse AMR level.
Definition AMReX_MLLinOp.H:329
LPInfo info
Definition AMReX_MLLinOp.H:585
MPI_Comm makeSubCommunicator(const DistributionMapping &dm)
Definition AMReX_MLLinOp.H:1391
Vector< Array< BCType, AMREX_SPACEDIM > > m_hibc
Definition AMReX_MLLinOp.H:573
int NMGLevels(int amrlev) const noexcept
Return the number of MG levels at given AMR level.
Definition AMReX_MLLinOp.H:567
T get_d1(T const &, T const &dy, T const &dz) const noexcept
Definition AMReX_MLLinOp.H:736
bool enforceSingularSolvable
Definition AMReX_MLLinOp.H:591
void setLevelBC(int amrlev, const AMF *levelbcdata, const AMF *robinbc_a=nullptr, const AMF *robinbc_b=nullptr, const AMF *robinbc_f=nullptr)
Definition AMReX_MLLinOp.H:1609
virtual RT xdoty(int amrlev, int mglev, const MF &x, const MF &y, bool local) const =0
x dot y, used by the bottom solver
virtual void interpolationAmr(int famrlev, MF &fine, const MF &crse, IntVect const &nghost) const
Interpolation between AMR levels.
Definition AMReX_MLLinOp.H:313
bool doConsolidation() const noexcept
Definition AMReX_MLLinOp.H:682
virtual std::unique_ptr< MLLinOpT< MF > > makeNLinOp(int) const
Definition AMReX_MLLinOp.H:495
virtual bool supportInhomogNeumannBC() const noexcept
Definition AMReX_MLLinOp.H:669
virtual void prepareForFluxes(int, const MF *=nullptr)
Definition AMReX_MLLinOp.H:380
LinOpBCType m_coarse_fine_bc_type
Definition AMReX_MLLinOp.H:635
virtual bool isSingular(int amrlev) const =0
Is it singular on given AMR level?
virtual void postSolve(Vector< MF * > const &) const
Definition AMReX_MLLinOp.H:543
int AMRRefRatio(int amr_lev) const noexcept
Return AMR refinement ratio at given AMR level.
Definition AMReX_MLLinOp.H:647
MPI_Comm m_bottom_comm
Definition AMReX_MLLinOp.H:615
virtual void restriction(int amrlev, int cmglev, MF &crse, MF &fine) const =0
Restriction onto coarse MG level.
virtual void beginPrecondBC()
Definition AMReX_MLLinOp.H:558
virtual void applyOverset(int, MF &) const
for overset solver only
Definition AMReX_MLLinOp.H:456
virtual void unimposeNeumannBC(int, MF &) const
This is needed for our nodal projection solver.
Definition AMReX_MLLinOp.H:450
bool getEnforceSingularSolvable() const noexcept
Definition AMReX_MLLinOp.H:256
virtual void prepareForSolve()=0
virtual void smooth(int amrlev, int mglev, MF &sol, const MF &rhs, bool skip_fillboundary, int niter) const =0
Smooth.
virtual void make(Vector< Vector< MF > > &mf, IntVect const &ng) const
Definition AMReX_MLLinOp.H:1481
bool hasInhomogNeumannBC() const noexcept
Definition AMReX_MLLinOp.H:1270
Vector< std::unique_ptr< MF > > robin_a_raii
Definition AMReX_MLLinOp.H:762
virtual int getNGrow(int=0, int=0) const
Definition AMReX_MLLinOp.H:263
int m_num_amr_levels
Definition AMReX_MLLinOp.H:593
Definition AMReX_MLMGBndry.H:12
Definition AMReX_MLMG.H:12
Definition AMReX_MLPoisson.H:16
This class provides the user with a few print options.
Definition AMReX_Print.H:35
A Box with real dimensions. A RealBox is OK iff volume >= 0.
Definition AMReX_RealBox.H:21
A Real vector in SpaceDim-dimensional space.
Definition AMReX_RealVect.H:32
This class is a thin wrapper around std::vector. Unlike vector, Vector::operator[] provides bound che...
Definition AMReX_Vector.H:27
Long size() const noexcept
Definition AMReX_Vector.H:50
bool notInLaunchRegion() noexcept
Definition AMReX_GpuControl.H:87
MPI_Comm CommunicatorSub() noexcept
sub-communicator for current frame
Definition AMReX_ParallelContext.H:70
int local_to_global_rank(int rank) noexcept
translate between local rank and global rank
Definition AMReX_ParallelContext.H:95
int global_to_local_rank(int rank) noexcept
Definition AMReX_ParallelContext.H:98
int NProcsSub() noexcept
number of ranks in current frame
Definition AMReX_ParallelContext.H:74
MPI_Comm Communicator() noexcept
Definition AMReX_ParallelDescriptor.H:210
Definition AMReX_Amr.cpp:49
@ make_alias
Definition AMReX_MakeType.H:7
void average_down(const MultiFab &S_fine, MultiFab &S_crse, const Geometry &fgeom, const Geometry &cgeom, int scomp, int ncomp, int rr)
Definition AMReX_MultiFabUtil.cpp:314
BoxND< AMREX_SPACEDIM > Box
Definition AMReX_BaseFwd.H:27
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE BoxND< dim > enclosedCells(const BoxND< dim > &b, int dir) noexcept
Returns a BoxND with CELL based coordinates in direction dir that is enclosed by b....
Definition AMReX_Box.H:1463
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE BoxND< dim > convert(const BoxND< dim > &b, const IntVectND< dim > &typ) noexcept
Returns a BoxND with different type.
Definition AMReX_Box.H:1435
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE BoxND< dim > coarsen(const BoxND< dim > &b, int ref_ratio) noexcept
Coarsen BoxND by given (positive) refinement ratio. NOTE: if type(dir) = CELL centered: lo <- lo/rati...
Definition AMReX_Box.H:1304
void EB_average_down(const MultiFab &S_fine, MultiFab &S_crse, const MultiFab &vol_fine, const MultiFab &vfrac_fine, int scomp, int ncomp, const IntVect &ratio)
Definition AMReX_EBMultiFabUtil.cpp:336
IntVectND< AMREX_SPACEDIM > IntVect
Definition AMReX_BaseFwd.H:30
AMREX_GPU_HOST_DEVICE constexpr GpuTupleElement< I, GpuTuple< Ts... > >::type & get(GpuTuple< Ts... > &tup) noexcept
Definition AMReX_Tuple.H:179
BottomSolver
Definition AMReX_MLLinOp.H:30
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void ignore_unused(const Ts &...)
This shuts up the compiler about unused variables.
Definition AMReX.H:127
void Warning(const std::string &msg)
Print out warning message to cerr.
Definition AMReX.cpp:236
void Abort(const std::string &msg)
Print out message to cerr and exit via abort().
Definition AMReX.cpp:230
int verbose
Definition AMReX_DistributionMapping.cpp:36
std::unique_ptr< Hypre > makeHypre(const BoxArray &grids, const DistributionMapping &dmap, const Geometry &geom, MPI_Comm comm_, Hypre::Interface interface, const iMultiFab *overset_mask)
Definition AMReX_Hypre.cpp:12
std::array< T, N > Array
Definition AMReX_Array.H:24
Definition AMReX_Array4.H:61
Definition AMReX_FabDataType.H:9
Definition AMReX_Array.H:34
Definition AMReX_TypeTraits.H:29
Definition AMReX_MLLinOp.H:35
LPInfo & setConsolidationRatio(int x) noexcept
Definition AMReX_MLLinOp.H:54
int con_strategy
Definition AMReX_MLLinOp.H:42
bool do_semicoarsening
Definition AMReX_MLLinOp.H:38
bool has_metric_term
Definition AMReX_MLLinOp.H:43
LPInfo & setConsolidationGridSize(int x) noexcept
Definition AMReX_MLLinOp.H:53
int max_semicoarsening_level
Definition AMReX_MLLinOp.H:45
bool hasHiddenDimension() const noexcept
Definition AMReX_MLLinOp.H:62
int con_ratio
Definition AMReX_MLLinOp.H:41
bool do_consolidation
Definition AMReX_MLLinOp.H:37
int con_grid_size
Definition AMReX_MLLinOp.H:40
LPInfo & setSemicoarsening(bool x) noexcept
Definition AMReX_MLLinOp.H:51
LPInfo & setHiddenDirection(int n) noexcept
Definition AMReX_MLLinOp.H:60
LPInfo & setConsolidation(bool x) noexcept
Definition AMReX_MLLinOp.H:50
LPInfo & setSemicoarseningDirection(int n) noexcept
Definition AMReX_MLLinOp.H:59
LPInfo & setMaxSemicoarseningLevel(int n) noexcept
Definition AMReX_MLLinOp.H:58
bool do_agglomeration
Definition AMReX_MLLinOp.H:36
LPInfo & setMetricTerm(bool x) noexcept
Definition AMReX_MLLinOp.H:56
static constexpr int getDefaultConsolidationGridSize()
Definition AMReX_MLLinOp.H:74
LPInfo & setConsolidationStrategy(int x) noexcept
Definition AMReX_MLLinOp.H:55
int max_coarsening_level
Definition AMReX_MLLinOp.H:44
int agg_grid_size
Definition AMReX_MLLinOp.H:39
static constexpr int getDefaultAgglomerationGridSize()
Definition AMReX_MLLinOp.H:66
int hidden_direction
Definition AMReX_MLLinOp.H:47
LPInfo & setAgglomerationGridSize(int x) noexcept
Definition AMReX_MLLinOp.H:52
LPInfo & setMaxCoarseningLevel(int n) noexcept
Definition AMReX_MLLinOp.H:57
LPInfo & setAgglomeration(bool x) noexcept
Definition AMReX_MLLinOp.H:49
int semicoarsening_direction
Definition AMReX_MLLinOp.H:46
Definition AMReX_MLLinOp.H:84
StateMode
Definition AMReX_MLLinOp.H:86
BCMode
Definition AMReX_MLLinOp.H:85
Location
Definition AMReX_MLLinOp.H:87
FabArray memory allocation information.
Definition AMReX_FabArray.H:66
Definition AMReX_MLLinOp.H:616
void operator=(const CommContainer &)=delete
~CommContainer()
Definition AMReX_MLLinOp.H:623
MPI_Comm comm
Definition AMReX_MLLinOp.H:617
CommContainer(const CommContainer &)=delete
CommContainer(CommContainer &&)=delete
CommContainer(MPI_Comm m) noexcept
Definition AMReX_MLLinOp.H:618